CHIARAVALL POLSKKA Spo z ooo.

SPIS TREŚCI

Motoreduktory i reduktory ślimakowe CHM - CHMR - CHME - CHMRE	str. 1
Wprowadzenie	str. 2
Oznakowanie - przykład zamówienia CHM - CHMR - CHME - CHMRE	str. 3
Przyłącza do silnika IEC	str. 4
Pozycje montażu	str. 5
Dane techniczne i wymiary CHM 025	str. 6
Daney techniczne CHM $30 \div 130$	str. 7
Wymiary $30 \div 130$ CHM - CHMR - CHME - CHMRE	str. 8-9
Przekładnie ślimakowe z dostawką walcową CHTPC / CHM - CHME	str. 10
Dostawki walcowe CHTPC / CHM - CHME wielkości mechaniczne	str. 11
Dane techniczne CHTPC / CHM	str. 12
Wymiary CHTPC / CHM	str. 13
$\begin{array}{ll}\text { Reduktory ślimakowe podwójne } & \text { CHM / CHM - CHME } \\ & \text { CHMR / CHM - CHME }\end{array}$	str. 14-15
Pozycje pracy CHM / CHM - CHME CHMR / CHM - CHME	str. 16
Dane techniczne CHM / CHM	str. 17
Wymiary przekładni podwójnych CHM / CHM	str. 18
Ramiona reakcyjne - Wałki zdawcze pojedyncze i podwójne	str. 19
Pokrywy piasty	str. 20
Tuleje redukcyjne BRM-S, BRM-D	str. 20
Silniki elektryczne CHT - dane techniczne	str. 21
Wymiary i gabaryty silników elektrycznych CHT	str. 21
Obce chłodzenie	str. 22
Lista części zamiennych przekładni ślimakowych	str. 23
Instrukcja obsługi i konserwacji	str. 24

MOTOREDUKTORY I REDUKTORY ŚLIMAKOWE

Reduktory ślimakowe Chiaravalli Trasmissioni S.p.a charakteryzują się kompaktową zwartą obudową, dużymi możliwościami adaptacyjnymi, cichą i niezawodną pracą. Obróbka części dokonana przy pomocy maszyn sterowanych numerycznie gwarantuje precyzję wykonania.
Obudowy przekładni ślimakowych w wielkościach 025-090 są wykonane z aluminium, natomiast w wielkościach 110-130 z żeliwa. Wszystkie przekładnie pomalowane są na kolor szary RAL 9022.
Każda przekładnia posiada przynajmniej jeden korek wlewu.
Specjalne kołnierze łączące pozwalają na połączenie dwóch reduktorów w celu osiągnięcia wysokich przełożeń.
Cztery wielkości mechaniczne dostawek walcowych CHTPC umożliwiają zwiększenie zakresu przełożeń do I=300. Obudowy dostawek walcowych wykonane są z aluminium i pomalowane tak jak przekładnie.
Wszystkie przekładnie w momencie sprzedaży zaopatrzone są w olej, którego charakterystyki podane są w poniższej tabeli.
Do smarowania przekładni w wielkościach od 025 do 090 stosuje się oleje syntetyczne, od 110-130 oleje mineralne.
SMAROWANIE

	CHM 025/090	CHM 110/130			CHTPC
Olej	Syntetyczny	Mineralny	Mineralny	Mineralny	Syntetyczny
${ }^{\circ}$ C otoczenia	$-25^{\circ} \mathrm{C} /+50^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C} /+50^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C} /+40^{\circ} \mathrm{C}$	$-15^{\circ} \mathrm{C} /+25^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C} /+50^{\circ} \mathrm{C}$
ISO	VG320	VG320	VG460	VG220	VG320
AGIP	TELIUM	BLASIA 320	BLASIA 460	BLASIA 220	TELIUM
	VSF 320				VSF 320
SHELL	TIVELA	OMALA	OMALA	OMALA	TIVELA
	OIL SC 320	OIL 320	OIL 460	OIL 220	OIL SC 320
IP	TELIUM VSF	MELLANA	MELLANA	MELLANA	TELIUM VSF
		OIL 320	OIL 460	OIL 220	

SMAROWANIE

Motoreduktory i reduktory wielkości 025 do 090 są fabrycznie napełnione olejem syntetycznym i dlatego nie wymagają żadnej obsługi. Do reduktorów wielkości 110 i 130 dołączony jest olej mineralny w ilości przewidzianej dla pozycji pracy B3. Do użytkownika należy dostosowanie ilości oleju do właściwego poziomu zgodnego z położeniem pracy przekładni jak też wymiana korka wlewu na odpowietrznik dołączony do reduktora. Brak instalacji odpowietrznika może spowodować powstawanie wewnątrz reduktora nadmiernego ciśnienia, a co za tym idzie zniszczenie uszczelek i powstanie nieszczelności. Dla wielkości 110 i 130 po 300 godzinach pracy (okresu docierania), zaleca się wymianę oleju.

ILOŚĆ OLEJU - FILTRY

CHM	025	030	040	050	063	075	090	110	130	CHTPC	63	71	80
B3	0.02	0.04	0.08	0.15	0.30	0.55	1	3	4.5	0.05	0.07	0.15	0.16
B8	0.02	0.04	0.08	0.15	0.30	0.55	1	2.2	3.3	0.05	0.07	0.15	0.16
B6/B7	0.02	0.04	0.08	0.15	0.30	0.55	1	2.5	3.5	0.05	0.07	0.15	0.16
V5	0.02	0.04	0.08	0.15	0.30	0.55	1	3	4.5	0.05	0.07	0.15	0.16
V6	0.02	0.04	0.08	0.15	0.30	0.55	1	2.2	3.3	0.05	0.07	0.15	0.16

PRZYŁACZA SILNIKA

Oferowane motoreduktory muszą być zespolone z silnikami za pomocą kołnierzy adaptacyjnych odpowiadających jakości klasy IEC. W tabeli poniżej przedstawiony jest stosunek wielkości silnika do wymiarów wału i kołnierza B5 lub B14 łączącego silnik z przekładnią ślimakową. Kołnierze są odkręcane od przekładni i dlatego istnieje możliwość dopasowania wałków i kołnierzy do przekładni, które nie występują w tabeli np. 19/140. To rozwiązanie pozwala na zastosowanie silników specjalnych np. brushless, prądu stałego lub serwo do odpowiednich wielkości przekładni.

PAM (IEC)	056	063	071	080	090	100	112	132
B5	$9 / 120$	$11 / 140$	$14 / 160$	$19 / 200$	$24 / 200$	$28 / 250$	$28 / 250$	$38 / 300$
B14	$9 / 80$	$11 / 90$	$14 / 105$	$19 / 120$	$24 / 140$	$28 / 160$	$28 / 160$	$38 / 200$

Przekładnie od wielkości 25 do 63 dostarczane sa zawsze z pozycjonowaniem uniwersalnym U, natomiast od wielości 75 do wielkości 130 w pozycji pracy B3, dlatego konieczne jest przełożenie korków i odpowietrznika zgodnie z właściwą pozycja pracy przekładni.
W przypadku, kiedy reduktor pracuje w pozycji V5 lub V6, konieczne jest nasmarowanie łożyska znajdującego się w górnej części przekładni. Smar przez nas zalecany to Tecnolubeseal POLYMER 400/2.

OZ NAK OW ANIE CHM－CHMR－CHME－CHMRE

TYP（1）	WIELKOŚĆ（2）	WERSJA（3）	POZYCJA KOŁNIERZA（4）i	P．A．M．（IEC）	POZYCJA MONTAŻU（4）
CHM	025	FA	7.5		U UNIWERSALNA
	030	FB	10		B3
CHMR	040	FC	15		B8
	050	FD	20	\checkmark	B6
CHME	063	FE	25	\pm	B7
	075		30	$\stackrel{N}{ \pm}$	V5
CHMRE	090		40		V6
	110		50	V	
	130		60		
			80		
			100		

PRZYKŁAD ZAMÓWIENIA

CHM	090	FA（5）	$2(5)$	30	90 B14	V5

W przypadku zamawiania także silnika należy wyszczególnić：

Wielkość	$90 \mathrm{~L} 4^{*}$
Moc	Kw $1,5^{*}$
Bieguny	4^{*}
Napięcie	$\mathrm{V} 230 / 400{ }^{*}$
Częstotliwość	50 Hz
Kołnierz	B 14^{*}

[^0]
PRZYŁACZA DO SILNIKA IEC

DANE TECHNICZNE I WYMIARY CHM 025

TYP	$\mathrm{i}=$ przełożenie	$\mathrm{n} 2 \mathrm{r} / \mathrm{min}$	$\mathrm{Kw}=\mathrm{P} 1$	$\mathrm{Nm}=$ T2	f.s.
	7.5	186.7	0.09	3.8	2.8
	10	140.0	0.09	5	2.4
	15	93.3	0.09	7.2	1.6
	20	70.0	0.09	9	1.3
	25	56.0	0.09	10	1.0
	30	46.7	0.09	12.3	1.1
	40	35.0	0.09	13	1.0
	50	28.0	0.09	14	0.7
	60	23.3	0.09	14	0.6

CHM 025 WYMIARY

CHM 025

DANE TECHNICZNE CHM $30 \div 130$

[^1] o obrotach 900 dopasowując moc i sprawdzając zastosowanie. W celu jakichkolwiek wyjaśnień prosimy o kontakt z naszym biurem technicznym.

Wymiary $30 \div 130$ CHM - CHMR - CHME - CHMRE

	B	A	F	D(H7)	d(f6)	G	H	R1	R	R2	R3	L	I	C	/1	N(h8)	E1	P	0
030	54	20	80	14	9	97	32	55	63	51	45	40	30	56	65	55	29	6.5	75
040	70	23	100	18	11	121.5	43	70	78	60	53	50	40	71	75	60	36.5	6.5	87
050	80	30	120	25	14	144	49	80	92	74	64	60	50	85	85	70	43.5	8.5	100
063	100	40	144	25	19	174	67	95	112	90	75	72	63	103	95	80	53	8.5	110
075	120	50	172	28	24	205	72	112.5	120	105	90	86	75	112	115	95	57	11	140
090	140	50	208	35	24	238	74	129.5	140	125	108	103	90	130	130	110	67	13	160
110	170	60	252.5	42	28	295	-	160	155	142	135	127.5	110	144	165	130	74	14	200
130	200	80	292.5	45	30	335	-	180	170	162	155	147.5	130	155	215	180	81	16	250

	S	T	U	\mathbf{V}	\mathbf{Z}	\mathbf{W}	P 1	α	\mathbf{b}	b 1	\mathbf{f}	\mathbf{t}	$\mathbf{t} \mathbf{1}$	Waga bez silnika
$\mathbf{0 3 0}$	44	57	5.5	21	27	44	$\mathrm{M} 6 \times 11(\mathrm{n} .4)$	0°	5	3	-	16.3	10.2	1.2
$\mathbf{0 4 0}$	55	71.5	6.5	26	35	60	$\mathrm{M} 6 \times 8(\mathrm{n} .4)$	45°	6	4	-	20.8	12.5	2.3
$\mathbf{0 5 0}$	64	84	7	30	40	70	$\mathrm{M} 8 \times 10(\mathrm{n} .4)$	45°	8	5	M 6	28.3	16.0	3.5
$\mathbf{0 6 3}$	80	102	8	36	50	85	$\mathrm{M} 8 \times 14(\mathrm{n} .4)$	45°	8	6	M 6	28.3	21.5	6.2
$\mathbf{0 7 5}$	93	119	10	40	60	90	$\mathrm{M} 8 \times 14(\mathrm{n} .4)$	45°	8	8	M 8	31.3	27.0	8.5
$\mathbf{0 9 0}$	102	135	11	45	70	100	$\mathrm{M} 10 \times 18(\mathrm{n} .4)$	45°	10	8	M 8	38.3	27.0	12
$\mathbf{1 1 0}$	125	167.5	14	50	85	115	$\mathrm{M} 10 \times 18(\mathrm{n} .4)$	45°	12	8	M 10	45.3	31.0	35
$\mathbf{1 3 0}$	140	187.5	15	60	100	120	$\mathrm{M} 12 \times 21(\mathrm{n} .4)$	45°	14	8	M 10	48.8	33.0	53

Wymiary $30 \div 130$ CHM - CHMR - CHME - CHMRE

		030	040	050	063	075	090	110	130
	R1	54.5	67	90	82	111	111	131	140
	F	6	7	9	10	13	13	15	15
	R	4	4	5	6	6	6	6	6
	N	50	60	70	115	130	152	170	180
FA	I	68/72*	75/95*	85/110*	150/165*	165/185*	175/195*	230	255
	P1	$6.5\left({ }^{\circ} 4\right)$	$9\left({ }^{\circ} 4\right)$	$11\left(\mathrm{n}^{\circ} 4\right)$	11($\mathrm{n}^{\circ} 4$)	14($\mathrm{n}^{\circ} 4$)	14($\mathrm{n}^{\circ} 4$)	14(${ }^{\circ} 8$)	16(n ${ }^{\circ} 8$)
	E	80	110	125	180	200	210	280	320
	E1	70	95	110	142	170	200	260	290
	α°	45°	22.5°						
FB	R1	-	97	120	112	90	122	180	-
	F	-	7	9	10	13	18	15	-
	R	-	4	5	6	6	6	6	-
	N	-	60	70	115	110	180	170	-
	I	-	75/95*	85/110*	150/165*	130/145*	215/230*	230	-
	P1	-	$9\left({ }^{\circ} 4\right)$	11(${ }^{\circ} 4$)	11(${ }^{\circ} 4$)	14(${ }^{\circ} 4$)	14(${ }^{\circ} 4$)	14($\mathrm{n}^{\circ} 8$)	-
	E	-	110	125	180	160	250	280	-
	E1	-	95	110	142	-	-	260	-
	α°	-	45°	45°	45°	45°	45°	45°	-
FC	R1	-	80	89	98	-	110	-	-
	F	-	9	10	10	-	17	-	-
	R	-	5	5	5	-	6	-	-
	N	-	95	110	130	-	130	-	-
	I	-	115	130	165	-	165/185*	-	-
	P1	-	$9.5\left(\mathrm{n}^{\circ} 4\right)$	$9.5\left(\mathrm{n}^{\circ} 4\right)$	11($\mathrm{n}^{\circ} 4$)	-	11($\mathrm{n}^{\circ} 4$)	-	-
	E	-	140	160	200	-	200	-	-
	α°	-	45°	45°	45°	-	45°	-	-
FD	R1	-	58	72	107	-	151	-	-
	F	-	12	14.5	10	-	13	-	-
	R	-	5	5	5	-	6	-	-
	N	-	80	95	130	-	152	-	-
	I	-	100/110*	115/125*	165	-	175/195*	-	-
	P1	-	$9\left(\mathrm{n}^{\circ} 4\right)$	11(${ }^{\circ} 4$)	11($\mathrm{n}^{\circ} 4$)	-	14(${ }^{\circ} 4$)	-	-
	E	-	120	140	200	-	210	-	-
	α°	-	45°	45°	45°	-	45°	-	-
FE	R1	-	-	-	80.5	-	-	-	-
	F	-	-	-	16.5	-	-	-	-
	R	-	-	-	5	-	-	-	-
	N	-	-	-	110	-	-	-	-
	I	-	-	-	130/145*	-	-	-	-
	P1	-	-	-	11(${ }^{\circ} 4$)	-	-	-	-
	F	-	-	-	160	-	-	-	-
	α°	-	-	-	45°	-	-	-	-

[^2]
PRZEKŁADNIE ŚLIMAKOWE Z DOSTAWKA WALCOWA CHTPC / CHM - CHME

OZNAKOWANIE CHTPC / CHM - CHME

TYP	WIELKOŚĆ	$\mathrm{i}=$ PRZEŁOŻENIE	P.A.M.	POZYCJA MONTAŻU
CHTPC	63	3	$63 B 5$	W przypadku zakupu dostawki CHTPC połączonej
71	3	71B5	CHM lub CHME, należy określić pozycję pracy	
	80	3	80B5	przekładni.
	90	2.42	$90 B 5$	Dostawka walcowa dostarczana oddzielnie

PRZYKŁAD ZAMÓWIENIA DOSTAWKI CHTPC POŁACZONEJ Z PRZEKŁADNIA CHM LUB CHME

CHTPC	90	CHM	110	$\mathrm{i}=242(2.42 \times 100)$	PAM 90B5	POS.B3

W przypadku zamówienia także i silnika, należy wyszczególnić:

Wielkość	$90 \mathrm{~L} 4 *$
Moc	$\mathrm{Kw} \mathrm{1,5}$
Bieguny	4^{*}
Napięcie	$\mathrm{V} 230 / 400 *$
Częstotliwość	50 Hz
Kołnierz	$\mathrm{B} 5{ }^{*}$

Przekładnie od wielkości 25 do 63 dostarczane są zawsze z pozycjonowaniem uniwersalnym U, natomiast od wielości 75 do wielkości 130 w pozycji pracy B3, dlatego konieczne jest przełożenie korków i odpowietrznika zgodnie z właściwą pozycja pracy przekładni.
W przypadku, kiedy reduktor pracuje w pozycji V5 lub V6, konieczne jest nasmarowanie łożyska znajdującego się w górnej części przekładni. Smar przez nas zalecany to Tecnolubeseal POLYMER 400/2.

DOSTAWKI WALCOWE CHTPC／CHM－CHME WIELKOŚCI MECHANICZNE

CHM－CHME	i	CHTPC 63	CHTPC 71	CHTPC 80	CHTPC 90
40	wszystkie	$\#$			
40	da 7.5 a 40	$\#$			
50	da 40 a 100	$\#$			
50	da 7.5 a 50				
63	da 50 a 100	$\#$	$\#$	$\#$	
63	da 30 a 100		$\#$	$\#$	
75	da 30 a 100				
75	da 30 a 100				
90	da 30 a 100				
90	da 30 a 100				
110	da 40 a 100				
110	da 30 a 100				
130	da 30 a 100				

INSTRUKCJA MONTAŻU ZEBNIKA

1）Zamontować podkładkę A（ewentualnie rozgrzewając do $80^{\circ} \div 100^{\circ} \mathrm{C}$ ）na wale silnika i zablokować elementem 638
2）Wprowadzić klin B załączony do wyposażenia
3）Zamontować zębnik E（ewentualnie rozgrzewając do $80^{\circ} \div 100^{\circ} \mathrm{C}$ ）na wale silnika
4）Zamocować podkładkę F za pomocą śruby C＊
5）Zamocować pierścień uszczelniający D w sposób pokazany na rysunku
6）Wprowadzić silnik z zębnikiem，uważając，aby nie uszkodzić pierścienia uszczelniającego

CHIARAVALLI
POLSKKA Spa 飞 ロロロ

DANE TECHNICZNE CHTPC / CHM

TYP $\mathbf{i}=$ przełożenie	$\mathrm{n} 2 \mathrm{r} / \mathrm{min}$	$\mathrm{K} \mathbf{w}=\mathrm{P} 1$	$\mathrm{Nm}=\mathrm{T}$ 2	
	90	15.6	0.18	61
	120	11.7	0.18	52
CHTPC63	150	9.3	0.18	46
CHM040	180	7.8	0.18	46
	240	5.8	0.18	40
	300	4.7	0.18	36

TYP	$\mathbf{i}=$ przełożenie	$\mathbf{n 2} \mathbf{r} / \mathbf{m i n}$	$\mathrm{K} \mathbf{w}=\mathrm{P} 1$	Nm=T2
	90	15.6	0.37	153
	120	11.7	0.37	190
CHTPC71	150	9.3	0.37	220
CHM075	180	7.8	0.37	236
	180	7.8	0.25	159
	240	5.8	0.25	208
	300	4.7	0.25	210

TYP	$\mathbf{i}=$ przełożenie	$\mathbf{n 2} \mathbf{r} / \mathbf{m i n}$	K w=P1	Nm=T2
	90	15.6	0.18	69
	120	11.7	0.18	85
CHTPC63	150	9.3	0.18	89
CHM050	180	7.8	0.18	88
	240	5.8	0.18	76
	300	4.7	0.18	65

TYP	$\mathbf{i}=$ przełożenie	n2 $\mathbf{r} / \mathbf{m i n}$	K w=P1	Nm=T2
	90	15.6	0.75	307
	120	11.7	0.55	278
CHTPC80	150	9.3	0.55	260
CHM075				

TYP	i=przełożenie	n2 $\mathbf{r} / \mathbf{m i n}$	K w=P1	Nm=T2
	180	7.8	0.37	260
CHTPC71	240	5.8	0.37	320
CHM090	300	4.7	0.37	345

TYP	$\mathbf{i}=$ przełożenie	$\mathbf{n 2} \mathbf{r} / \mathbf{m i n}$	K w=P1	Nm=T2
	150	9.3	0.18	101
CHTPC63	180	7.8	0.18	115
CHM063	240	5.8	0.18	136
	300	4.7	0.18	121

TYP	i=przełożenie	n2 $\mathbf{r} / \mathbf{m i n}$	K w=P1	Nm=T2
	90	15.6	0.75	320
CHTPC80	120	11.7	0.75	397
CHM090	150	9.3	0.75	426
	180	7.8	0.75	425
	240	5.8	0.55	374

TYP	$\mathbf{i}=$ przełożenie	$\mathrm{n} 2 \mathbf{r} / \mathrm{min}$	$\mathrm{K} \mathbf{w}=\mathrm{P} 1$	$\mathrm{Nm}=\mathrm{T}$ 2
	90	15.6	0.37	145
	90	15.6	0.25	98
CHTPC71	120	11.7	0.37	184
CHM063	120	11.7	0.25	124
	150	9.3	0.37	192
	150	9.3	0.25	129
	180	7.8	0.25	164
	240	5.8	0.25	139
	300	4.7	0.25	128

Wybór zainstalowanej mocy zależy od dostępnych zunifikowanych silników. Zawsze należy sprawdzić wyspecyfikowany moment maksymalny. W razie niejasności prosimy o kontakt z naszym biurem technicznym.

TYP	i=przełożenie	n2 $\mathbf{r} / \mathbf{m i n}$	K w=P1	Nm=T2
	120	11.7	0.75	421
CHTPC80	150	9.3	0.75	496
CHM110	180	7.8	0.75	569
	240	5.8	0.75	617
	300	4.7	0.55	585

TYP	$\mathbf{i}=$ przełożenie	$\mathbf{n 2} \mathbf{r} / \mathrm{min}$	$\mathrm{K} \mathbf{w = P} \mathbf{1}$	Nm=T2
	96.8	14.5	1.50	679
CHTPC90	121	11.6	1.50	801
CHM110	145.2	9.6	1.50	810
	145.2	9.6	1.10	595
	193.6	7.2	1.10	660

WYMIARY CHTPC - CHM

CHTPC CHM	\mathbf{B}	F	$\mathrm{D}(\mathrm{H})$	G	H	R 1	\mathbf{R}	L	I	$I 2$	C	\boldsymbol{I}	$\mathrm{N}(\mathrm{H} 8)$	E 1	P	O	S	T
$\mathbf{6 3 + 0 4 0}$	70	100	18	121.5	43	123	78	50	40	40	71	75	60	36.5	6.5	87	55	71.5
$\mathbf{6 3 + 0 5 0}$	80	120	25	144	49	133	92	60	50	40	85	85	70	43.5	8.5	100	64	84
$\mathbf{7 1 + 0 5 0}$	80	120	25	144	49	143	92	60	50	50	85	85	70	43.5	8.5	100	64	84
$\mathbf{6 3 + 0 6 3}$	100	144	25	174	67	148	112	72	63	40	103	95	80	53	8.5	110	80	102
$\mathbf{7 1 + 0 6 3}$	100	144	25	174	67	158	112	72	63	50	103	95	80	53	8.5	110	80	102
$\mathbf{7 1 + 0 7 5}$	120	172	28	205	72	176	120	86	75	50	112	115	95	57	11	140	93	119
$\mathbf{8 0 + 0 7 5}$	120	172	28	205	72	186	120	86	75	63	112	115	95	57	11	140	93	119
$\mathbf{7 1 + 0 9 0}$	140	208	35	238	74	193	140	103	90	50	130	130	110	67	13	160	102	135
$\mathbf{8 0 + 0 9 0}$	140	208	35	238	74	203	140	103	90	63	130	130	110	67	13	160	102	135
$80(90)+110$	170	252.5	42	295	-	233	155	127.5	110	63	144	65	130	74	14	200	125	167.5
$\mathbf{8 0 (9 0) + 1 3 0}$	200	292.5	45	335	-	253	170	147.5	130	63	155	215	180	81	16	250	140	187.5

CHTPC CHM	U	V	Z	W	P1	α°	b	t	waga w kg bez silnika
63+040	6.5	26	35	60	M6x8n. 4	45°	6	20.8	3.9
63+050	7	30	40	70	M8x10n. 4	45°	8	28.3	5.2
71+050	7	30	40	70	M8x10n. 4	45°	8	28.3	5.8
63+063	8	36	50	85	M8x14n. 8	45°	8	28.3	7.9
71+063	8	36	50	85	M8x14n. 8	45°	8	28.3	8.5
71+075	10	40	60	90	M8x14n. 8	45°	8	31.3	11
80+075	10	40	60	90	M8x14n. 8	45°	8	31.3	12.6
71+090	11	45	70	100	M10x18n. 8	45°	10	38.3	14.3
80+090	11	45	70	100	M10x18n. 8	45°	10	38.3	16.2
$80(90)+110$	14	50	85	115	M10x18n. 8	45°	12	45.3	39
$80(90)+130$	15	60	100	120	M12x21n. 8	45°	14	48.8	67.2

KIERUNEK OBROTU

CHIARAVALLI
POLSKRA Spa 飞 Oぃロ

OZNAKOWANIE CHM／CHM－CHME E CHMR／CHM－CHME

TYP W	WIELKOŚĆ（1）	WERSJA（2）	POZYCJA KOŁNIERZA（3）	i	POZ．PRACY（4）	P．A．M．（IEC）	POZ ．MONT．（5）
CHM／CHM	030／040	FA	13	300	OAD		U
CHM／CHME	030／050	FB	24	400	OAS		B3
CHMR／CHM	030／063	FC		500	0 OBD		B8
CHMR／CHME	E 040／075	FD		600	0 OBS		B6
	040／090	FE		750	VAD		B7
	050／110			900	0 VAS		V5
	063／130			1200	0 VBD		V6
				1500	0 VBS		
				1800			
2400							

－przekładnie podwójne dostarczane są w standardzie pozycji pracy OBS
－pozycja montażu（np．V5）odnosi się do drugiego reduktora

PRZYKŁAD ZAMÓWIENIA

CHM／CHM	$040 / 090$	FA（5）	$2(5)$	500	OAD	63	B14

W przypadku zamówienia także silnika należy wyszczególnić：

Wielkość	$63 \mathrm{~B} 4{ }^{*}$
Moc	Kw $0,18^{*}$
Bieguny	4^{*}
Napięcie	$\mathrm{V} 230 / 400$＊
Częstotliwość	50 Hz ＊
Kołnierz	B 14^{*}

Przekładnie od wielkości 25 do 63 dostarczane sa zawsze z pozycjonowaniem uniwersalnym U，natomiast od wielości 75 do wielkości 130 w pozycji pracy B3，dlatego konieczne jest przełożenie korków i odpowietrznika zgodnie z właściwą pozycja pracy przekładni．
W przypadku，kiedy reduktor pracuje w pozycji V5 lub V6，konieczne jest nasmarowanie łożyska znajdującego się w górnej części przekładni．Smar przez nas zalecany to Tecnolubeseal POLYMER 400／2．

POZYCJE PRACY

[^3]DANE TECHNICZNE CHM/CHM

TYP $\mathbf{i}=$ przełożenie	$\mathrm{n} 2 \mathrm{r} / \mathrm{min}$	$\mathrm{K} \mathbf{w = P}=$	Nm=T2	
	300	4.7	0.09^{*}	70
	400	3.5	0.09^{*}	63
	500	2.8	0.09^{*}	57
CHM	600	2.3	0.09^{*}	72
$030 / 040$	750	1.9	0.09^{*}	72
	900	1.6	0.09^{*}	73
	1200	1.2	0.09^{*}	65
	1500	0.9	0.09^{*}	73
	1800	0.8	0.09^{*}	73
	2400	0.6	0.09^{*}	65

TYP i=przełożenie	n2 r/min	K w=P1	Nm=T2
300	4.7	0.75	871
400	3.5	0.75	1013
500	2.8	0.55	984
600	2.3	0.55	1062
CHM 750	1.9	0.55	1128
050/110 900	1.6	0.37	1079
1200	1.2	0.25	943
1500	0.9	0.25	1064
1800	0.8	0.25	1075
2400	0.6	0.18	1001

TYP i=przełożenie	$\mathrm{n} 2 \mathrm{r} / \mathrm{min}$	K w=P1	Nm=T2
300	4.7	0.22	210
400	3.5	0.18	222
500	2.8	0.18	205
600	2.3	0.18*	208
CHM 750	1.9	0.18*	216
030/063 900	1.6	0.09	200
1200	1.2	0.09	236
1500	0.9	0.09*	204
1800	0.8	0.09*	202
2400	0.6	0.09*	220

TYP	$\mathbf{i}=$ przełozenie	$\mathrm{n} 2 \mathrm{r} / \mathrm{min}$	$\mathrm{K} \mathbf{w}=\mathrm{P} 1$	$\mathrm{Nm}=\mathrm{T} \mathbf{2}$
	300	4.7	0.37	405
	400	3.5	0.25	336
	500	2.8	0.25	307
	600	2.3	0.18	362
CHM	750	1.9	0.18	391
$\mathbf{0 4 0 / 0 7 5}$	900	1.6	0.18^{*}	325
	1200	1.2	0.18^{*}	359
	1500	0.9	0.09	360
	1800	0.8	0.09	404
	2400	0.6	0.09^{*}	330

TYP $\mathbf{i}=$ przełożenie	$\mathrm{n} 2 \mathrm{r} / \mathrm{min}$	$\mathrm{K} \mathbf{w}=\mathrm{P} 1$	Nm=T2	
	300	4.7	0.37	405
	400	3.5	0.37	523
	500	2.8	0.37	550
CHM	600	2.3	0.37	605
$040 / 090$	750	1.9	0.25	538
	900	1.6	0.25	533
	1200	1.2	0.18	629
	1500	0.9	0.18	588
	1800	0.8	0.18^{*}	492
	2400	0.6	0.18^{*}	625

TYP	$\mathbf{i}=$ przełożenie	$\mathrm{n} 2 \mathbf{r} / \mathbf{m i n}$	$\mathrm{K} \mathbf{w}=\mathrm{P} 1$	Nm=T2
	300	4.7	1.50	1789
	400	3.5	1.10	1519
	500	2.8	1.10	1629
CHM	600	2.3	0.75	1631
$063 / 130$	750	1.9	0.75	1804
	1200	1.6	0.75	1826
	1500	1.2	0.55	1705
	1800	0.9	0.37	1674
	2400	0.6	0.37	1698
			0.25	1624

Dla pozycji zaznaczonych * moc silnika jest wyższa od dopuszczalnej mocy dla reduktora; dlatego wyboru należy dokonać na podstawie dopuszczalnego momentu a nie mocy. W tabeli wyspecyfikowano najpopularniejsze przełożenia. Możliwe jest uzyskanie innych poprzez kombinację różnych przełożeń przekładni współpracujących.

СНМ-СНМ	B	A	F	C1	D(H7)	d(j6)	G	H	R1	R	R2	L	L1	I	11	C	12	N(H8)	E1	E2	P
030/040	70	20	100	80	18	9	121.5	43	55	78	51	50	40	40	30	71	75	60	36.5	29	6.5
030/050	80	20	120	80	25	9	144	49	55	92	51	60	40	50	30	85	85	70	43.5	29	8.5
030/063	100	20	144	80	25	9	174	67	55	112	51	72	40	63	30	103	95	80	53	29	8.5
040/075	120	23	172	100	28	11	205	72	70	120	60	86	50	75	40	112	115	95	57	36.5	11
040/090	140	23	208	100	35	11	238	74	70	140	60	103	50	90	40	130	130	110	67	36.5	13
050/110	170	30	252.5	120	42	14	295	-	80	155	74	127.5	60	110	50	144	165	130	74	43.5	14
063/130	200	40	292.5	144	45	19	335	-	95	170	90	147.5	72	130	63	155	215	180	81	53	16

CHM-CHM	0	S	T	T1	U	V	Z	Y	W	P1	a	b	b1	f	t	t1	waga w kg bez silnika
	87	55	71.5	57	6.5	26	35	120	60	M6x8(n.4)	45°	6	3	-	20.8	10.2	3.9
030/050	100	64	84	57	7	30	40	130	70	M8x10(n.4)	45°	8	3	-	28.3	10.2	5.0
030/063	110	80	102	57	8	36	50	145	85	M8x14(n.8)	45°	8	3	-	28.3	10.2	7.8
040/075	140	93	119	71.5	10	40	60	165	90	M8x14(n.8)	45°	8	4	-	31.3	12.5	11.5
040/090	160	102	135	71.5	11	45	70	182	100	M10x18(n.8)	45°	10	4	-	38.3	12.5	15
050/110	200	125	167.5	84	14	50	85	225	115	M10x18(n.8)	45°	12	5	M6	45.3	16.0	39.2
063/130	250	140	187.5	102	15	60	100	245	120	M12x21(n.4)	45°	14	6	M6	48.8	21.5	70

* wymiary kołnierza i otworów mocujących IEC podaje tabela na str. 8 i 9.

RAMIONA REAKCYJNE

TYP	I	R	F	H	$\emptyset E$	A	B	$\emptyset С$	$\emptyset d$	$\emptyset Р$	N	Waga zest. kg
CHT MV 25*	70	15	17.5	14	8	33.5	118.5	55	7	45	4	0.17
CHT MV 30*	85	15	24	14	8	38	138	65	7	55	8	0.18
CHT MV 40	100	18	31.5	14	10	44	162	75	7	60	8	0.24
CHT MV 50	100	18	38.5	14	10	50	168	85	9	70	8	0.27
CHT MV 63	150	18	49	14	10	55	223	95	9	80	8	0.57
CHT MV 75	200	30	47.5	25	20	70	300	115	9	95	8	1.10
CHT MV 90	200	30	57.5	25	20	80	310	130	11	110	8	1.26
CHT MV 110	250	35	62	30	25	100	385	165	11	130	8	1.92
CHT MV 130/150	250	35	69	30	25	125	410	215	14	180	8	2.23

* Bez pierścienia antywibracyjnego

Punkt zamocowania ramienia reakcyjnego wyposażony jest w pierścień antywibracyjny.

WAtKI ZDAWCZE JEDNOSTRONNE

TYP	A	$\emptyset \mathrm{d}$	B	b	t 1	R	L	d 2	Waga zest. kg
CHT MVS 25	23	11	25.5	4	12.5	55.5	81	-	0.07
CHT MVS 30	30	14	32.5	5	16	69.5	102	M6x16	0.14
CHT MVS 40	40	18	43	6	20.5	85	128	M6x16	0.27
CHT MVS 50	50	25	53.5	8	28	99.5	153	M10x22	0.60
CHT MVS 63	50	25	53.5	8	28	119.5	173	M10x22	0.67
CHT MVS 75	60	28	63.5	8	31	128.5	192	M10x22	0.94
CHT MVS 90	80	35	84.5	10	38	149.5	234	M12x28	1.79
CHT MVS 110	80	42	84.5	12	45	164.5	249	M16x35	2.70
CHT MVS 130	80	45	85	14	48.5	180	265	M16x35	3.60

WAŁKI ZDAWCZE DWUSTRONNE

TYP	A	$\varnothing \mathrm{d}$	B	R	b	t 1	L	d 2	Waga zest. kg
CHT MVD 25	23	11	25.5	50	4	12.5	101	-	0.11
CHT MVD 30	30	14	32.5	63	5	16	128	M6x16	0.16
CHT MVD 40	40	18	43	78	6	20.5	164	M6x16	0.34
CHT MVD 50	50	25	53.5	92	8	28	199	M10×22	0.75
CHT MVD 63	50	25	53.5	112	8	28	219	M10×22	0.84
CHT MVD 75	60	28	63.5	120	8	31	247	M10×22	1.20
CHT MVD 90	80	35	84.5	140	10	38	309	M12×28	2.50
CHT MVD 110	80	42	84.5	155	12	45	324	M16x35	3.44
CHT MVD 130	80	45	85	170	14	48.5	340	M16×35	4.25

TYP	C3
$\mathbf{0 3 0}$	43
$\mathbf{0 4 0}$	50
$\mathbf{0 5 0}$	59
$\mathbf{0 6 3}$	70
$\mathbf{0 7 5}$	75
$\mathbf{0 9 0}$	87
$\mathbf{1 1 0}$	95
$\mathbf{1 3 0}$	103

TULEJE REDUKCYJNE

POJEDYNCZE

TYP	$\varnothing \mathrm{i} / \varnothing \mathrm{e}$	L	kliny	waga zest. kg
CHT BRM-S	$9 / 11$	20	$4 / 3 \times 4 \times 11 \mathrm{RB}^{*}$	0.006
CHT BRM-S	$11 / 14$	30	$5 / 4 \times 6 \times 10 \mathrm{RB}^{*}$	0.015
CHT BRM-S	$14 / 19$	40	$6 \times 5 \times 30^{*}$	0.045
CHT BRM-S	$19 / 24$	50	$6 \times 5.5 \times 20^{*}$ $8 \times 5.5 \times 40^{*}$	0.07
CHT BRM-S	$24 / 28$	60	$8 \times 9 \times 40^{*}$	0.08
CHT BRM-S	$28 / 38$	80	$10 \times 7 \times 60^{*}$	0.33
CHT BRM-S	$38 / 42$	110	$12 / 10 \times 10 \times 48$ RB* *	0.22

PODWÓJNE

TYP	$\varnothing \mathrm{i} / \varnothing \mathrm{e}$	L	kliny	waga zest. kg
CHT BRM-D	$11 / 19$	40	$6 \times 6 \times 30^{*}$	0.06
CHT BRM-D	$14 / 24$	50	$8 \times 7 \times 40 \mathrm{~A}$	0.12
CHT BRM-D	$19 / 28$	60	$8 \times 7 \times 50 \mathrm{~A}$	0.16
CHT BRM-D	$24 / 38$	80	$10 \times 8 \times 60 \mathrm{~A}$	0.44

* na rysunku

Klin UNI 6604 DIN 6885
Ulepszane

SILNIKI ELEKTRYCZNE TRÓJFAZOWE

DANE TECHNICZNE SILNIKÓW 4-BIEGUNOWYCH
(1400 RPM)

TYP			$\begin{gathered} \text { MOC } \\ \text { kW } \end{gathered}$	NAPIĘCIE V	PRĄD $400 \mathrm{~V}$	PARA SIL N/m	WYDAJNOŚĆ \%	$\begin{gathered} \text { WSPÓŁCZYNNIK } \\ \text { COS. } \varnothing \end{gathered}$	WAGA Kg.
CHT	56	B4	0.09	230/400	0.43	0.64	50	0.61	3.2
CHT	63	A4	0.12	230/400	0.47	0.86	57	0.64	3.9
CHT	63	B4	0.18	230/400	0.70	1.27	57	0.65	4.5
CHT	63	C4	0.22	230/400	0.92	1.77	59	0.67	4.8
CHT	71	A4	0.25	230/400	0.84	1.77	60	0.72	5.6
CHT	71	B4	0.37	230/400	1.12	2.58	65	0.74	6.2
CHT	71	C4	0.55	230/400	1.61	3.81	66	0.75	7.0
CHT	80	A4	0.55	230/400	1.59	3.81	67	0.75	8.9
CHT	80	B4	0.75	230/400	1.94	5.20	72	0.78	10.0
CHT	80	D4	1.10	230/400	2.67	7.60	76.2	0.78	11.0
CHT	90	S4	1.10	230/400	2.64	7.50	76.2	0.79	12.1
CHT	90	L4	1.50	230/400	3.46	10.20	78.5	0.80	14.3
CHT	90	LL4	1.85	230/400	4.30	9.24	79	0.78	16.0
CHT	100 L	A4	2.20	230/400	4.86	14.80	81.0	0.81	21.0
CHT	100 L	B4	3.00	230/400	6.50	20.20	82.6	0.81	24.7
CHT	112	M4	4.00	230/400	8.26	26.70	84.2	0.83	30.1
CHT	132	S4	5.50	230/400	11.00	36.22	85.7	0.84	44.0
CHT	132	M4	7.50	230/400	14.64	49.40	87.0	0.85	52.0

WYMIARY I GABARYTY

TYP	WYMIARY MONTAŻU (mm)																OBJĘTOŚĆ		
					B5						B14								
	d	H	b	G	I	M	F	X	V	S	1	M	F	X	V	S	B	C	L
56	9	20	3	10.2	98	80	120	0	7	3.0	65	50	80	0	M5	2.5	120	100	195
63	11	23	4	12.5	115	95	140	0	10	3.0	75	60	90	0	M5	2.5	130	110	215
71	14	30	5	16	130	110	160	0	10	3.5	85	70	105	0	M6	2.5	145	117	255
80	19	40	6	21.5	165	130	200	0	12	3.5	100	80	120	0	M6	3.0	165	137	290
90S	24	50	8	27	165	130	200	0	12	3.5	115	95	140	0	M8	3.0	185	145	310
90L/90LL	24	50	8	27	165	130	200	0	12	3.5	115	95	140	0	M8	3.0	185	145	335/365
100L	28	60	8	31	215	180	250	0	15	4.0	130	110	160	0	M8	3.5	205	152	386
112M	28	60	8	31	215	150	250	0	15	4.0	130	110	160	0	M8	3.5	230	180	395
132 S	38	80	10	41	265	230	300	0	15	4.0	165	130	200	0	M10	4.0	270	195	436
132M	38	80	10	41	265	230	300	0	15	4.0	165	130	200	0	M10	4.0	270	195	475

- Silniki z wirnikiem kratowym, zamknięte z wentylacją zewnętrzną,
- Projekt, budowa, próba zgodne z normami CEI2-3,
- Normy międzynarodowe IEC 34-1 i główne normy zagraniczne
- Moce-wielkości według norm IEC 72, normy krajowe UNEL-MEC
- Klasa izolacji F
- Zabezpieczenie IP55
- Rodzaj pracy S1
- Klasa wydajności EFF 2
- Dyrektywa Europejska ROHS 2002/95/CE
- Łożyska NSK lub SKF
- Zabezpieczenia fazowe
- Dostępne silniki 2 i 6 biegunowe
- Dostępny zestaw łap montażowych
- Dostępny zestaw obcych chłodzeń

OBCE CHLODZENIE * SERIA JEDNOFAZOWA IP 55

WIELKOŚĆ	VOLT	Hz	PRĘDKOŚĆ NOM. MIN/1	POBÓR WATT	PRAD M.A.	PODMUCH POWIETRZA M 3/H
GR.63	230	$50 / 60$	2750	$15 / 14$	$120 / 100$	180
GR.71	230	$50 / 60$	2750	$15 / 14$	$120 / 100$	180
GR.80	230	$50 / 60$	2750	$15 / 14$	$120 / 100$	180
GR.90	230	$50 / 60$	2900	$42 / 36$	$190 / 180$	340
GR.100	230	$50 / 60$	2900	$42 / 36$	$190 / 180$	340
GR.112	230	$50 / 60$	2900	$42 / 36$	$190 / 180$	340
GR.132	230	$50 / 60$	2900	$42 / 36$	$190 / 180$	340

WIELKOŚC	KOD IP 55
GR.63	AS063230
GR.71	AS071230
GR.80	AS080230
GR.90	AS090230
GR.100	AS100230
GR.112	AS112230
GR.132	AS132230

A	B	C	D	E	F	G	L x L
121	123	102	58	6	50	104	75
136	138	120	70	6	50	111	75
153	155	130	80	6	55	125	100
172	176	145	75	6	60	135	100
195	197	150	85	8	60	150	100
218	220	160	100	10	60	160	100
255	257	180	120	10	65	175	100

[^4]
LISTA CZĘŚCI ZAMIENNYCH

－pierścień uszczelniający
－śruba
－nakrętka
－podkładka
－śruba z główką sześciokątną
－kołnierz przyłączenia silnikami
－0－ring
－podkładka wyrównująca
－łożysko
－ślimak p．a．m．CHM
－ślimak p．a．m．CHME
－pierścień uszczelniający
－pokrywa ślimaka
－łożysko
－klin
－ślimak CHMR
－ślimak CHMRE
18．klin
19 －korek oleju

20 ．skrzynia
21．pierścień uszczelniający
22 ．kołnierz wyjścia
23 ．śruba imbusowa
24 ．łożysko
25 ．seeger
26 －pierścień uszczelniający
27 －zaślepka
28 ．łożysko
29 ．ślimacznica
30 －O－ring
31 ．pokrywa wyjścia
32 －seeger
33 －podkładka
34 －klin
35 －klin
36 ．wał zdawczy podwójny
37 －wał zdawczy pojedynczy

CHIARAVALLI
POLSKRA Spa 飞 ○ロロロ

Instrukcja obsługi i konserwacji reduktorów ślimakowych i dostawek walcowych

INSTALACJA

- Dane przedstawione na tabliczce identyfikacyjnej muszą odpowiadać zamówionemu reduktorowi
- poziom oleju dla wielkości 110 i 130 zaopatrzonych w korki wlewu, wpustu i wzierniki, muszą odpowiadać ilości przewidzianej dla pozycji montowania zamówionej (patrz katalog), poza tym dla wskazanych wielkości będzie należała do gestii klienta wymiana zamkniętego korka wlewu dodanego do transportu z odpowiednim odpowietrznikiem załączonym do reduktora
- wszystkie inne reduktory są dostarczane z olejem syntetycznym w ilości odpowiedniej dla każdej pozycji montowania
_ reduktor mocujemy na powierzchniach płaskich i wystarczająco twardych w sposób wykluczający wibracje
- reduktor i wał maszyny współpracującej muszą znajdować się w perfekcyjnie równej linii
- w przypadku przewidzianych uderzeń, przeciążeń lub blokad maszyny klient musi przewidzieć zamontowanie ograniczników, złączek, odłączników bezpiecznikowych itd.
- Dostawki z zębnikami, złączki, koła i inne części muszą uprzednio zostać oczyszczone w celu uniknięcia uszkodzeń podczas montażu, ponieważ mogą spowodować uszkodzenie łożysk i innych części wewnętrznych
- w przypadku kiedy silnik znajduje się na wyposażeniu klienta, należy się upewnić czy tolerancje kołnierza i wału odpowiadają klasie IEC. Silniki CHT spełniają ten wymóg.
- sprawdzić, czy śruby przytwierdzające reduktor i inne części wyposażenia są poprawnie wkręcone
- przystosować właściwe osłony w celu zabezpieczenia przed agresywnym działaniem atmosferycznym
- tam gdzie jest to przewidziane zabezpieczyć części ruchome przed kontaktem z pracownikami
- w przypadku malowania reduktorów zabezpieczyć pierścienie uszczelniające i części obrobione
- wszystkie reduktory są pomalowane na kolor szary RAL 9022

DZIAŁANIE I DOCIERANIE

- w celu osiągnięcia naj̣lepszych wydajności należy zadbać o właściwe dotarcie zwiększając moc stopniowo podczas pierwszych godzin pracy, w tej fazie wzrost temperatury uznaje się za normę
- w przypadku wadliwego działania, trzasków, utraty oleju itd., należy natychmiast zatrzymać reduktor i tam gdzie jest to możliwe usunąć przyczynę, alternatywnie przesłać część do siedziby naszej firmy w celu dokonania kontroli

KONSERWACJA

- Reduktory ślimakowe od wielkości 25 do wielkości 90 oraz dostawki są zalane olejem syntetycznym, dlatego nie wymagają żadnej konserwacji
- Reduktory wielkości 110 i 130 są zalane olejem olejem mineralnym i zaopatrzone w odpowietrznik, dlatego należy okresowo sprawdzać poziom oleju i przypadku konieczności uzupełnienia, należy użyć oleju identycznego lub kompatybilnego do wskazanych w naszym katalogu
- w przypadku reduktorów wielkości 110 i 130 należy wymienić olej po pierwszych 300 godzinach pracy, uzupełniając prawidłową ilością wskazaną w naszym katalogu według pozycji zamontowania, po uprzednim oczyszczeniu wnętrza reduktora

PRZECHOWYWANIE W MAGAZYNIE

- w przypadku długiego przechowywania w magazynie, przekraczającego 3 miesiące, zaleca się zabezpieczenie wałów i powierzchni obrabianych przy użyciu przeciwutleniaczy oraz naoliwienie pierścieni uszczelniających

PRZESTAWIANIE

- podczas przestawiania zespołów należy zachować maksymalną ostrożność, aby nie uszkodzić pierścieni uszczelniających i powierzchni obrabianych

UTYLIZACJA OPAKOWAŃ

- opakowania, w których dostarczane są nasze reduktory, tam gdzie jest to możliwe powinny być przekazane do utylizacji odpowiednim firmom.

ODDZIAŁY WŁOSKIE DEPOZYTY

via per Cedrate s / n
21044 Cavaria con Premezzo－VARESE Tel． 0331214511 －Fax 0331215916
via 1° Maggio， 10
40011 BOLOGNA／Anzola dell＇Emilia Tel． 051735290 －Fax 051735366
via E．Cantoni，3－20156 MILANO Tel． 0233400947 －Fax 0233400949
via Portogallo， 11 int．51－35127 PADOVA Tel． 0498705205 －Fax 0498705237
via G．B．Lulli， 61 H－ 10148 TORINO Tel． 0112267146 －Fax 0112266925

ODDZIAŁY ZAGRANICZNE

CHIARAVALLI FRANCE SARL

2，bis rue de Paris－F－77230 Villeneuve S／Dammartin FRANCE
Ph． 0033160946666 －Fax 0033160946660
www．chiaravalli．fr－e－mail：info＠chiaravalli．fr
CHIARAVALLI ESPAÑA SL
C／．Industria S／N－E－ 08592 Sant Marti de Centelles Barcelona ESPAÑ
Ph． 0034938440099 －Fax 0034938442193
e－mail：chiaravall＠grupobbva．net
CHIARAVALLI CZ s．r．o．
Brnenská，43－59101 Zd＇ár nad Sázavou CZECH REPUBLIC
Ph． 00420566686161 －Fax 00420566686171
www．chiaravalli．cz－e－mail：info＠chiaravall．cz

CHIARAVALLI TRASMISSIONI S．p．A
Via T．Minniti， 560
21044 Cavaria con Premezzo（VA）－Italy Tel．+39.0331 .214 .511
Fax＋39．0331．219．430 735．067－735．090
www．chiaravalli．com
e－mail：chiaravalli＠chiaravalli．it

CHIARAVALLI POLSKA Sp．z o．o．
UI．Polna，133－87－100 Toruń
Ph． 0048566233000
Fax 0048566238246
www．chiaravalli．pl
e－mail：info＠chiaravalli．pl

[^0]: 1）patrz strona 1
 2）patrz strona 6 i 7
 3）patrz strona 9
 4）patrz strona 5
 5）brak wskazówki oznacza，że reduktor nie posiada kołnierza na wyjściu．
 6）＊przykład

[^1]: Zawsze jest możliwe połączenie z silnikami o mniejszej mocy niż jest to wskazane w tabeli. Możliwe jest łączenie silników o obrotach 2800 lub

[^2]: * Zaznaczone wartości przedstawiają bardziej prześwit niż otwór, dlatego rozstaw zamocowania może być zawarty w pewnym przedziale. Z tego względu przyjmuje się wartość średnią.

[^3]: * wykonanie określa pozycję montażu jednego reduktora względem drugiego reduktora. Jeżeli w zamówieniu nie jest określone inaczej, to cały zespół jest dostarczany w wykonaniu OBS. Pozycja mocowania odnosi się do drugiego reduktora.

[^4]: * OBCE CHŁODZENIE TRÓJFAZOWE DOSTĘPNE JEST NA ZAMÓWIENIE.

