

FILTRATION

FLUID CONTAMINATION SOLUTIONS CATALOG 1

Fluid Contamination Under Control ...

DFE Rated Filter Element Upgrades

Upgrade existing hydraulic and lube filter elements to Hy-Pro G7 Dualglass for cleaner fluid and improved reliability. Hy-Pro Elements are validated to achieve $\beta x_{fcl} > 1000$ beta ratios.

Element Upgrades For:

Pall	Hydac
Schroeder	MP Filtri
Donaldson	Vickers
General Elec	Hilco
Indufil	PTI
Stauff	Western
Porous Media	Finn
Cuno	Baldwin
Norman	Vokes

Parker Internormen Eppensteiner Kaydon Taisei Kogyo Purolator Fairey Arlon Fleetguard Yamashin

. . . And More!

High Pressure Filters

In-Tank Return Filters

Off-line Filter Units

High Flow Filter Assemblies & Duplexes

... with innovative filtration products, support and solutions

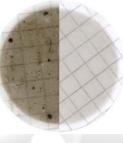
VAC-U-DRY Vacuum Dehydrators

75% of all hydraulic component failures are caused by surface degradation which is related to fluid contamination. The effects of moisture in oil systems can drastically reduce on stream plant availability. Bearing life and critical component life is greatly reduced by moisture levels above and within the saturation point. Continuous or periodic high water levels can result in damage such as:

- Metal Etching (corrosion)
- Abrasive wear in hydraulic components
- Dielectric Strength Loss
- Fluid Breakdown Additive precipitation and oil oxidation Reduction in lubricating

properties

Vac-U-Dry removes water down to 50 ppm (0.005%), well below saturation, with greater efficiency than centrifuge, coalescing, or air stripping technologies



Filtering New Oil - Particulate and Water

New oil is typically dirty oil, and not suitable for use in hydraulic and lube systems. New oil is one of the worst

New oil is one of the worst sources of particle contaminant ingression.

New oil ISO code can be 25/22/19 while servo system target is 16/14/11 or cleaner. Water must also be removed from new oil before adding new fluids to the system.

Mobile Filtration Systems - Filter Carts The FCL series filter carts are ideal for both hydraulic and lube fluids (low and

Media options for fine particulate ($\beta 5_{[c]} > 1000$) & water removal capability. Flow rates 18 ~ 82 Lpm, 5 ~ 22 Gpm.

high viscosity).

Optional particle monitor. Oil sampling ports standard.

Cleaner Fluid Improves Reliability & Uptime

Table 1 details extension of roller contact bearing component life as the ISO fluid cleanliness code improves.

				and the second se
	Current ISO Code	Target ISO Code	Target ISO Code	Target ISO Code
	Start	2 x Life	4 x Life	5 x Life
	25/22/19	20/18/15	16/14/11	15/13/10
	23/21/18	19/17/14	15/13/10	14/12/9
	22/20/17	18/16/13	15/13/10	13/11/8
	21/19/16	17/15/12	13/11/8	-
2	20/18/15	16/14/11	-	-
	19/17/14	15/13/10	-	-
	18/16/13	14/12/9	-	-

TABLE OF CONTENTS

Reference	4	Understanding ISO Fluid Cleanliness Codes
Fluid Contamination	5	Target ISO Code Selection
	7	Machine Tool Case Study
	9	Filter Types & Locations
	14	Filter Selection & Sizing
	19	Dynafuzz Stainless Fiber Media
	21	Glass Media Upgrades
	22	Component Life Extension
	23	What is DFE (Dynamic Filter Efficiency)
	29	Water Removal Elements
Fluid Conditioning	30	Vac-U-Dry Vacuum Dehydrator
Equipment	38	FC Filter Cart
	45	FCL Filter Cart
Coming Soon! Coalesce Skids and Coalesce Filter Carts	52	FSL Dedicated Filter Unit
coalesce Skius Carts	60	FPL Dedicated Spin-on Filter Panel
Coming Sciences and Coalesce Skids and Pneumatic Filter Carts		
Filter Assemblies	66	TF4 In-Tank Return Filter
Low Pressure	70	TFR In-Tank Return Filter
	79	LF / LFM High Flow Return / Off-Line Filter
	87	Spin-on Filter Assembly
Filter Assemblies	92	PF2 In-Line & Manifold Mount Filter
High Pressure	97	PFH In-Line High Pressure Filter
	104	Bi-Directional Full Flow Pressure Filter
Filter Assemblies	111	DLF / DLFM High Flow Low Pressure Duplexes
Duplex	120	DFN Medium Pressure In-Line Duplex
	128	DFH High Pressure In-Line Duplex
Reservoir Accessories	136	Reservoir & Gearbox Breathers
	145	Suction Strainers
Application Tools	147	PTK1 - Field Patch Test Kit
••	148	Vac-U-Dry Application Questionnaire
	149	Filter Assembly Application Data Sheet
	150	Non-Standard Element Data Sheet
	152	Warranty Statement
	153	Return Good Policy
	154	Return Good Authorization Form

UNDERSTANDING ISO CODES

The ISO cleanliness code (per ISO4406-1999) is used to quantify particulate contamination levels per milliliter of fluid at 3 sizes $4\mu_{[c]}$, $6\mu_{[c]}$ and $14\mu_{[c]}$. The ISO code is expressed in 3 numbers (example: 19/17/14). Each number represents a contaminant level code for the correlating particle size. The code includes all particles of the specified size and larger. It is important to note that each time a code increases the quantity range of particles is doubling.

	ISO 4406:1999	Code Chart				
Range	Particles per	milliliter	O a manufactura	1 (a.a	(a. 4)	
Code	More than	Up to/including	Sample	1 (see pho	to 1)	
24	80000	160000	Particle	Particles per	ISO 4406	
23	40000	80000	Size	milliliter	Code range	
22	20000	40000	4µm _[c]		80000~160000	
21	10000	20000	6μm _[c]	38363 8229	20000~40000	
20	5000	10000	10μ m _[c] 14μm _[c]	3339	2500~5000	
19	2500	5000	21μ m _[c]	1048	2000 0000	
18	1300	2500	38μ m [c]	112		
17	640	1300				
17 16	640 320	1300 640				
16	320	640	Sample 2	2 (see pho	to 2)	
16 15	320 160	640 320		Particles	,	
16 15 14	320 160 80	640 320 160	Sample 2 Particle Size	Particles per	ISO 4406	
16 15 14 13	320 160 80 40	640 320 160 80	Particle Size	Particles	ISO 4406	
16 15 14 13 12	320 160 80 40 20	640 320 160 80 40	Particle	Particles per milliliter	ISO 4406 Code range	
16 15 14 13 12 11	320 160 80 40 20 10	640 320 160 80 40 20	Particle Size 4μm _[c]	Particles per milliliter 492 149 41	ISO 4406 Code range 320 ~ 640 80 ~ 160	
16 15 14 13 12	320 160 80 40 20	640 320 160 80 40	Particle Size 4μm _[c] 6μm _[c]	Particles per milliliter 492 149 41 15	ISO 4406 Code range 320 ~ 640	
16 15 14 13 12 11	320 160 80 40 20 10	640 320 160 80 40 20	Particle Size 4μm[c] 6μm[c] 10μm[c] 12μm[c] 21μm[c]	Particles per milliliter 492 149 41 15 5	ISO 4406 Code range 320 ~ 640 80 ~ 160	
16 15 14 13 12 11 10	320 160 80 40 20 10 5	640 320 160 80 40 20 10	Particle Size 4μm[c] 6μm[c] 10μm[c] 14μm[c]	Particles per milliliter 492 149 41 15	ISO 4406 Code range 320 ~ 640 80 ~ 160	
16 15 14 13 12 11 10 9	320 160 80 40 20 10 5 2.5	640 320 160 80 40 20 10 5	Particle Size 4μm[c] 6μm[c] 10μm[c] 12μm[c] 21μm[c]	Particles per milliliter 492 149 41 15 5	ISO 4406 Code range 320 ~ 640 80 ~ 160	

Photo 1: ISO code 24/22/19

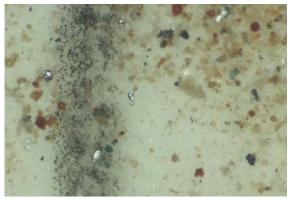


Photo 2: ISO code 16/14/11

Selecting Target ISO Cleanliness Codes

When setting target ISO fluid cleanliness codes for hydraulic and lubrication systems it is important to keep in mind the objectives to be achieved. Maximizing equipment reliability and safety, minimizing repair and replacement costs, extending useful fluid life, satisfying warranty requirements, and minimizing production down-time are attainable goals. Once a target ISO cleanliness code is set following a progression of steps to achieve that target, monitor it, and maintain it will yield justifiable rewards for your efforts. Make an impact on reliability by controlling contamination.

Set the Target.

The first step in identifying a target ISO code for a system is to identify the most sensitive component on an individual system, or the most sensitive component supplied by a central reservoir. If a central reservoir supplies several systems the overall cleanliness must be maintained, or the most sensitive component must be protected by filtration that cleans the fluid to the target before reaching that component.

Other Considerations.

Table 1 recommends conservative target ISO cleanliness codes based on several component manufacturers guidelines and extensive field studies for standard industrial operating conditions in systems using petroleum based fluids. If a nonpetroleum based fluid is used (i.e. water glycol) the target ISO code should be set one value lower for each size $(4\mu[c]/6\mu[c]/14\mu[c])$. If a combination of the following conditions exists in the system the target ISO code should also be set one value lower:

- Component is critical to safety or overall system reliability.
- Frequent cold start.
- Excessive shock or vibration.
- Other Severe operation conditions.

5

Recommended* Target ISO Cleanliness Codes and media selection for systems using petroleum based fluids per ISO4406:1999 for particle sizes $4\mu[c] / 6\mu[c] / 14\mu[c]$

	Pressure	Media	Pressure	Media	Pressure	Media
_		βx[c] = 1000	212 bar	βx[c] = 1000		
Pumps	< 2000 psi	(βx = 200)	3000 psi	(βx = 200)	> 3000 psi	(βx = 200)
Fixed Gear	20/18/15	22μ _[c] (25μ)	19/17/15	12μ _[c] (12μ)	-	-
Fixed Piston	19/17/14	12μ _[c] (12μ)	18/16/13	12μ _[c] (12μ)	17/15/12	7μ _[c] (6μ)
Fixed Vane	20/18/15	22μ _[c] (25μ)	19/17/14	12μ _[c] (12μ)	18/16/13	12μ _[c] (12μ)
Variable Piston	18/16/13	7μ _[c] (6μ)	17/15/13	5μ _[c] (3μ)	16/14/12	7μ _[c] (6μ)
Variable Vane	18/16/13	7μ _[c] (6μ)	17/15/12	5μ _[c] (3μ)	-	-

Valves

18/16/13	12μ _[c] (12μ)	17/15/12	7μ _[c] (6μ)	17/15/12	7μ _[c] (6μ)
20/18/15	22μ _[c] (25μ)	20/18/15	22μ _[c] (25μ)	19/17/14	12μ _[c] (12μ)
20/18/15	22μ _[c] (25μ)	19/17/14	12μ _[c] (12μ)	18/16/13	12μ _[c] (12μ)
19/17/14		18/16/13		18/16/13	12μ _[c] (12μ)
19/17/14		18/16/13		17/15/12	7μ _[c] (6μ)
17/15/12		17/15/12		16/14/11	5μ _[c] (3μ)
17/15/12	7μ _{[c}] (6μ)	17/15/12	7μ _[c] (6μ)	16/14/11	5μ _[c] (3μ)
17/15/12		17/15/12		16/14/11	5μ _[c] (3μ)
17/15/12		17/15/12		16/14/11	5μ _[c] (3μ)
16/14/11	7μ _[c] (6μ)	16/14/11	5μ _[c] (3μ)	15/13/10	5μ _[c] (3μ)
15/13/10	5μ _[c] (3μ)	-	-	-	-
17/16/13		-	-	-	-
17/15/12		-	-	-	-
17/15/12		-	-	-	-
16/14/11	7μ _[c] (6μ)	-	-	-	-
17/15/12	7μ _[c] (6μ)	16/14/11	5μ _{ίcl} (3μ)	15/13/10	5μ _[c] (3μ)
20/18/15		19/17/14		18/16/13	12μ _[c] (12μ)
19/17/14		18/16/13		17/15/12	7μ[c] (6μ)
20/18/14		19/17/13		18/16/13	12μ _[c] (12μ)
20/18/15		19/17/14		18/16/13	12μ _[c] (12μ)
	20/18/15 20/18/15 19/17/14 19/17/14 17/15/12 17/15/12 17/15/12 16/14/11 15/13/10 17/16/13 17/15/12 16/14/11 17/15/12 16/14/11 17/15/12 20/18/15 19/17/14 20/18/14	$\begin{array}{c ccccc} 20/18/15 & 22\mu_{\rm [C]}\left(25\mu\right)\\ 20/18/15 & 22\mu_{\rm [C]}\left(25\mu\right)\\ 20/18/15 & 22\mu_{\rm [C]}\left(25\mu\right)\\ 19/17/14 & 12\mu_{\rm [C]}\left(12\mu\right)\\ 19/17/14 & 12\mu_{\rm [C]}\left(12\mu\right)\\ 17/15/12 & 7\mu_{\rm [C]}\left(6\mu\right)\\ 17/15/12 & 7\mu_{\rm [C]}\left(6\mu\right)\\ 17/15/12 & 7\mu_{\rm [C]}\left(6\mu\right)\\ 17/15/12 & 7\mu_{\rm [C]}\left(6\mu\right)\\ 16/14/11 & 7\mu_{\rm [C]}\left(6\mu\right)\\ 17/16/13 & 12\mu_{\rm [C]}\left(12\mu\right)\\ 17/15/12 & 7\mu_{\rm [C]}\left(6\mu\right)\\ 16/14/11 & 7\mu_{\rm [C]}\left(6\mu\right)\\ 17/15/12 & 7\mu_{\rm [C]}\left(6\mu\right)\\ 17/15/12 & 7\mu_{\rm [C]}\left(6\mu\right)\\ 17/15/12 & 7\mu_{\rm [C]}\left(6\mu\right)\\ 17/15/12 & 22\mu_{\rm [C]}\left(25\mu\right)\\ 20/18/15 & 22\mu_{\rm [C]}\left(25\mu\right)\\ 20/18/14 & 22\mu_{\rm [C]}\left(25\mu\right)\\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Test Stands	15/13/10	5μ _[c] (3μ)	15/13/10	5μ _[c] (3μ)	15/13/10	5μ _[c] (3μ)
Hydrostatic Transmissions	17/15/13	7μ _[c] (6μ)	16/14/11	5μ[c] (3μ)	16/14/11	5μ[c] (3μ)

*Depending upon system volume and severity of operating conditions a combination of filters with varying degrees of filtration efficiency might be required (I.e. pressure, return, and off-line filters) to achieve and maintain the desired fluid cleanliness.

Example		ISO Code	Comments
Operating Pressure	156 bar, 2200 psi		
Most Sensitive Component	Directional Solenoid	19/17/14	recommended baseline ISO Code
Fluid Type	Water Glycol	18/16/13	Adjust down one class
Operating Conditions	Remote location, repair difficult		Adjust down one class, combination
	High ingression rate	17/15/12	of critical nature, severe conditions

Extending Roller Bearing Life.

Improving fluid cleanliness in lubrication systems for roller bearings can exponentially increase component life. The table (right) describes attainable increases in life expectancy of roller bearings as improvements in ISO fluid cleanliness codes are made. Life extension for hydraulic components can be achieved by improving fluid cleanliness.

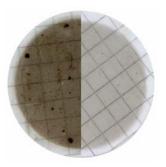
Current ISO Code	Target ISO Code	Target ISO Code	Target ISO Code	Target ISO Code
	2 x Life	3 x Life	4 x Life	5 x Life
28/26/23	25/22/19	22/20/17	20/18/15	19/17/14
27/25/22	23/21/18	21/19/16	19/17/14	17/15/12
25/23/20	21/19/16	19/17/14	17/15/12	16/14/11
15/22/19	20/18/15	18/16/13	16/14/11	15/13/10
23/21/18	19/17/14	17/15/12	15/13/10	14/12/9

Accurate oil analysis - Once the target ISO fluid cleanliness code is established it is critical to properly measure the actual cleanliness of the system. A well designed plan to achieve cleanliness can be undermined if steps are not taken to ensure accurate and repeatable oil analysis. When sampling the oil a wide range of variables can affect the outcome yielding inaccurate results. For more information see Accurate oil sampling and analysis article.

Oil sampling methods and practices - Bottle samples analyzed by independent laboratories is common and widely accepted as a method of quantifying fluid cleanliness. However, there are many variables associated with bottle sampling that can cause inaccurate readings.

- Background contamination in "clean" sample bottles or vacuum tubes can increase ISO codes by 1~4 classes per size measured, 4μ[c]/6μ[c]/14μ[c].
- Inconsistent in-plant sampling practices (i.e. sample port flush time, bottle rinsed or not).
- Exposure of sample to airborne contaminate during sampling and analysis
- Analysis lab procedure repeatability by operator (i.e. agitation~count interval affect on suspension).
- Analysis lab calibration drift.
- Variability between oil analysis lab particle counting equipment.

On-line particle counting - Connecting an on-line particle counter directly to the hydraulic or lube system through sampling ports provides the most accurate snapshot of fluid cleanliness and eliminates many of the inherent variables associated with bottle sampling. Some particle counters can function with system pressure as low as 20 psi (1.42 bar) at certain viscosities for sampling pressure line, return line, or lubrication system. There are also particle counter options available to draw (Sip) the fluid from a reservoir, tote, or other container directly into the particle counter when system pressure is not available. Monitor sample port cleanliness in real time to know when the sample is truly representative of the system and not tainted with sample port contaminate buildup.



Maintaining control of the sampling and analysis procedures increases the accuracy of your results, eliminates the waiting game to get samples back from a lab, and allows quicker response to contamination related issues. Performing internal particle counts is a good complement to laboratory oil analysis for PPM, TAN, wear metals analysis, etc. No one knows your system better than you and once armed with the right oil analysis approach and diagnostic equipment you can make improvements in reliability.

Oil sampling port types and locations - Just as sampling technique and method can compromise results, sampling port and location can also be a challenge. Sampling ports are often contamination collection points and must be flushed for up to 6 minutes before a truly representative sample is captured. Without a proper port flush the results can be affected. Port location is also critical to obtaining a good sample. Locating a sampling where there is turbulent flow will provide more realistic results than a laminar area.

PTK-1 Oil Analysis Kit - Patch test kits are a good complement to on-line particle counters as they provide the capability to visually analyze contamination levels and types in the system. The kit includes a microscope, vacuum pump, test patches, and solvent dispenser integrated into a carrying case. The kit also features a reference manual to correlate visual patch appearance to approximate ISO code.

Machine Tool Contamination Field Study

Focus: Solving contamination issues resulting from insufficient filtration on power units and machine tools.

APPLICATIONS

- Pressure filters are ideal for protecting control valves and other sensitive components from internally generated contaminate and ingression.
- Machine tools without a pressure filter protecting valve manifolds after the pump.
- Power units on CNC lathes and milling equipment, plastics injection molding, mobile equipment, and other small industrial machines with sensitive control valves.

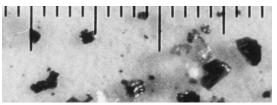
The Problem - Insufficient filtration

Machine tools and power units are frequently designed without the filtration necessary to maintain recommended fluid cleanliness levels for the system. A fluid cleanliness case study of three CNC lathes (A, B, C) raised some concern. The only filtration present was either a coarse suction strainer or coarse return-line screen. Baseline oil

analysis (see fig 1) revealed that the fluid cleanliness levels of the hydraulic fluids (per ISO 4406 code chart) were higher than recommended levels for the system components (see fig 2).

fig. 1	
Machine	ISO code*
А	22 / 20 / 14
В	23 / 20 / 14
С	23 / 21 / 16

tig 2.			
Pumps	<2000 psi	2000~3000	>3000 psi
Fixed gear	20/18/15	19/17/15	
Fixed vane	20/18/15	19/17/14	18/16/13
Fixed piston	19/17/14	18/16/13	17/15/12
Variable vane	18/16/13	17/15/12	
Variable piston	18/16/13	17/15/13	16/14/12
Valves		2000~3000	>3000 psi
Directional	(solenoid)	20/18/15	19/17/14
Proportional		17/15/12	16/14/11
Servo Valve		16/14/11	15/13/10


Contamination Basics & Sources

Particulate contamination is the number one cause of hydraulic component failure, and 70~75% of failures are related to surface degradation caused by mechanical wear.

Sources of particulate contamination

- Built-In contamination (assembly environment, dirty new components and hoses, metal fabrication)
- Ingested contamination (leaky reservoirs, no reservoir breather, worn rod wipers and bearing seals, dirty replacement components, system exposure during maintenance, new oil—see fig 3.)
- Internally generated contamination (abrasive wear, adhesive wear, stress related wear, corrosion, fluid breakdown)

Fig 3 (new oil typical ISO code 24/21/18).

fin O

Solution Part I - System Clean-up

The pressure filter assembly, including $\beta 12[c] = 1000$ filter element and element condition indicator, was added to each of the three machines (see fig 4) after the pressure pump (piston type). After nine days of operation the indicators on machines A and C were signaling terminal pressure drop. At that time all three elements were serviced and the oil was analyzed (see fig 5). The ISO codes improved, but not to the level recommended for servo valves. The next step was to set target cleanliness codes and enhance the filtration efficiency to reach the target. The spent elements that were removed contained large particles including piping putty (from installation of new hoses) and other large

other large debris that was not being removed by the suction strainer.

ng ′	Mach.	ISO code before Pressure filter	ISO code after 9 days (β12[c] = 1000)
	А	22 / 20 / 14	19 / 18 / 12
	В	23 / 20 / 14	21 /18 / 12
	С	23 / 21 / 16	20 / 18 / 13

Solution Part II - Enhanced Filtration and Target Cleanliness Codes

A target ISO Cleanliness Code of 16 / 14 / 11 (measured at filter effluent) was established for all three machines to protect and maximize piston pump and solenoid valve life.

New filter elements were installed with a more efficient rating of $\beta 5_{[c]} = 1000$ ($\beta 3 = 200$ according to old standards) to achieve the target. After 60 days of service the oil from all three machines was analyzed (see fig 7), even though none of the assemblies were indicating terminal pressure drop.

Machines B and C were able to attain the target while A did not, although adding the pressure filter made considerable improvement in cleanliness. The oil was sampled after 180 days using an on-line particle counter connected to the drain plug of the filter bowl. This location represents one of the dirtiest points on the system since the oil has been through the system and in the reservoir. Sampling with an online particle counter and proper flushing techniques eliminates variables associated with bottle sampling. Figure 8 illustrates increased life expectancy for hydraulic components that can be realized by reducing fluid cleanliness codes. The benefits of clean fluid justify the cost of filtration.

Benefits of clean fluid

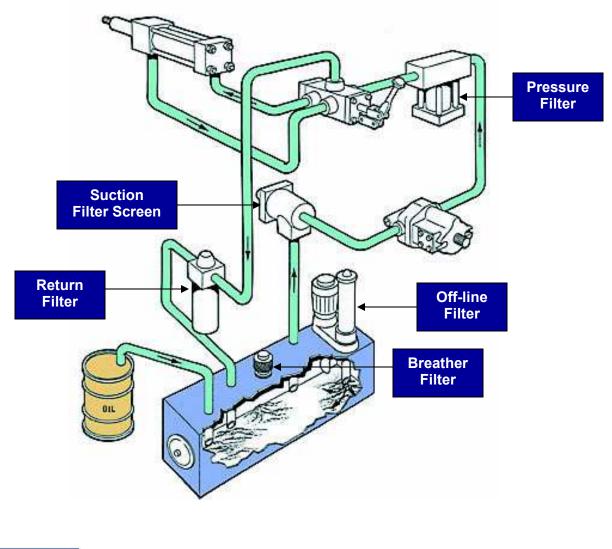
- Minimize unplanned equipment downtime.
- Reduce maintenance costs and labor.
- Reduce expensive component repair or replacement costs.
- Improve operating efficiency of equipment with sensitive components.
- Extend service life of fluids.

Adding a desiccant breather to the reservoir assures that the air ingested is dry and clean. Reducing water content reduces chemical compound formation, biological growth, oxidation and extends fluid life. Desiccant breathers also control particulate contaminate ingression down to 4μ [c] or 2μ with absolute efficiency. Filler-breather caps commonly found on reservoirs don't properly control particulate contamination. Specific desiccant breathers also adsorb water and oil mist as the reservoir exhales. A full range of adapters is commonly available to retro-fit any reservoir.

fig. 7			
Mach.	ISO code before filter	ISO code after 60 days (β5 _[c] = 1000)	ISO code after 180 days (β5 _[c] = 1000)
А	22 / 20 / 14	17 / 15 / 11	'11 / 9 / 7
В	23 / 20 / 14	15 / 13 / 8	13 / 11 / 9
С	23 / 21 / 16	16 / 12 / 10	14 / 11 / 9

Hydraulic Component

Current	Target	Target	Target	Target
ISO Code				
	2 x Life	3 x Life	4 x Life	5 x Life
28/26/23	25/22/19	22/20/17	20/18/15	19/17/14
27/25/22	23/21/18	21/19/16	19/17/14	18/16/13
26/24/21	22/20/17	20/18/15	19/17/14	17/15/12
25/23/20	21/19/16	19/17/14	17/15/12	16/14/11
25/22/19	20/18/15	18/16/13	16/14/11	15/13/10
23/21/18	19/17/14	17/15/12	15/13/10	14/12/9
22/20/17	18/16/13	16/14/11	15/13/10	13/11/8
21/19/16	17/15/12	15/13/10	13/11/8	-
20/18/15	16/14/11	14/12/9	-	-
19/17/14	15/13/10	13/11/8	-	-
18/16/13	14/12/9	-	-	-
17/15/12	13/11/8	-	-	-



Hydraulic & Lubrication Filters

Part I: Filter Types and Locations

It is very important to select a filter that will improve the reliability of a lube or hydraulic system so that the cause of any failure is not due to contamination.

Let us look at the various options for the location of a filter. There are no known mathematical models that will easily locate a filter in a given system. Even today, the location of filter remains subjective and it is up to the system designer to locate a filter to suit the system. However, there are a few locations that are predominantly used in a lube or a hydraulic system.

SUCTION FILTER OR SUCTION STRAINER

This filter is located on a suction port of the pump or submerged in the reservoir and attached to the suction line leading to the pump. The intention of a suction filter is to protect the pump from

large particles found in the reservoir. This filter is usually a coarse mesh filter or even a magnetic separator. High efficiency filters are usually not placed on the suction side as high differential pressure can cause pump failure. A fine filter on a pump suction side would require the filter to be very large which will not only handle the flow but also have an extremely low pressure drop. Fine filters would also have a tendency to load quicker than coarse filters which allow the majority of small particles to pass. Improperly sized suction filters will cause the pump to fail due to cavitation rather than contamination.

Many pump OEMs discourage the use of suction filters and suction

strainers because of the inherent risk of pump cavitation. Proper return filtration coupled with off-line filtration and proper control of particulate ingression with high efficiency breathers can often render suction filtration unnecessary.

PRESSURE FILTER

This filter is generally installed between the pump outlet and the rest of the components in a hydraulic system. The idea here is to protect all components in a given system. This filter must withstand full system pressure and must be capable of handling the max flow of the pump. For systems with a variable workload the filter must withstand fluctuating flow, pressure cycles and spikes. In most cases, this is usually the smallest filter but it is also the most expensive.

High Pressure filters may be installed with or without a bypass valve. The purpose of the integral bypass is to allow a portion of the flow to bypass the filter during cold start conditions or when the filter element is heavily loaded with contaminant. If a pressure filter with bypass is selected it is critical that the element is changed immediately after indication or on a regular preventive maintenance schedule. If the components in the system are very sensitive to contamination (servo valves) a pressure filter with no bypass may be selected to ensure that all of the fluid entering the sensitive components is filtered.

Filters with a bypass utilize elements that are classified as low collapse and can withstand differential pressures up to 450 psid, 30 bar. Filters with no bypass utilize elements that are classified as high collapse and can withstand differential pressures up to 3000 psid or 450 bar. The cost between bypass and non-bypass filter assemblies is minimal, however, high collapse replacement elements can cost up to 300% more than low collapse elements.

RETURN FILTER

Return filters may be installed either in-line or inside the reservoir (In-tank return filter). There are varieties of filters available for each style of filters. The designer of the system collects all flow from the system and directs it through the return line filter. Such an arrangement makes certain that the oil in the reservoir will be cleaned to desired ISO specification.

When a system contains several double acting cylinders it should be noted that the return flow from the blind end of a cylinder would usually be higher than the maximum flow of the pump. This filter must handle the maximum flow due to flow multiplication during cylinder discharge. (For more explanation of this contact Hy-Pro)

Return filters are fitted with internal or external bypass valves as a standard since they are subject to flow rates that may be higher than that of the maximum pump flow rate. The bypass valve protects the housing from bursting and the element from collapse failure.

Oversizing the return filter is a common practice. This allows the flexibility to enhance the degree of filtration without creating excessively high differential pressure. Normally this is the largest and least expensive filter and a common filter for a mobile hydraulic system.

PILOT LINE PRESSURE FILTER

Some systems have a very sensitive components that see only a fraction of the flow. It is very easy to filter the entire system to the required cleanliness level, or as an alternate a smaller filter

with a fine filter media can be installed in the critical leg of a system and the balance of the system can be fitted with an appropriately coarser filter. This might sound like an added expense but in the long run it is very economical for a system to have two filters rather than a large single filter with a fine filter media. The maintenance cost will be greater than initial cost of installing two filters in a system. In all of the above instances it should be noted that whenever the filter element requires servicing, the system must be shut down, element replaced and the system re-started. If such a condition is undesirable, such as in power plants, paper mills, etc. then it would be prudent to install a Duplex filter.

DUPLEX HIGH PRESSURE FILTER

When a single filter assembly is applied the system must be shut down or bypassed whenever the filter element requires servicing. If such a condition is undesirable (power plant) then it would be prudent to install a Duplex filter.

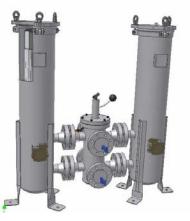
A duplex features at least two filter housings with a transfer valve separating the housings. The flow can be routed through one housing or both depending on the valve. When one of the filters is fully loaded the operator switches the valve to activate the standby filter and then services the dirty filter. This Duplex filter avoids shutting down of a system during a filter change.

DUPLEX LOW PRESSURE, HIGH FLOW FILTER

High flow, low pressure applications (lubrication, fuel oil) where shutting down the system to service a filter is not an option a duplex should be installed.

The Hy-Pro DLF and DLFM can handle high flows and high viscosity fluids typically used in lubrication applications. The DLFM may have up to 22 elements per vessel to yield extended element life .

The duplexes feature a true 6-way transfer valve to making switching between filter housings easy.


OFF-LINE FILTER (DEDICATED)

Some OEMS or the users of a hydraulic or lube system install an off line filter system. This system is a self-contained filter system. It includes a pump-motor combination as a power source and a range of filtration flexibility to accomplish many desired results. It can easily be connected to a system reservoir. This system can be run 24/7 or intermittently.

It can be fitted with very fine filter element to clean the oil several ISO classes below the required cleanliness, and can also be used to remove water. Multiple filters can be installed in series to remove water with one element and remove fine particulate with the next or extend element life with a "step down" approach to degree of filtration. When the filter element reaches its terminal drop, it is serviced without shutting down the main system.

OFF-LINE FILTER (MOBILE)

Mobile off-line filtration systems can offer the same impact and flexibility as dedicated off-line filters while performing multiple tasks. They include a pump-motor combination as a power source and filters that can be fitted with many different elements depending on the activity.

Commonly referred to as filter carts they can be fitted with quick disconnect fittings and connected to a reservoir or tote for conditioning, used to filter fluids during transfer, and used for filtering oil during recovery. A filter cart fitted with two filters in series can have a rapid impact on fluid cleanliness and water content with the appropriate filter elements are applied. They can also be fitted with online particle monitors that will alarm when the desired cleanliness is achieved during flushing applications. If a particle monitor is not specified oil sampling ports should be installed to measure cleanliness.

New oil is typically not suitable for any hydraulic or lubrication system so it is important to avoid contaminating a machine when adding fluids.

BREATHERS

High efficiency breathers are an essential component to proper contamination control. Pleated breathers with glass media can remove particulate down to 1 micrometer with absolute efficiency. Desiccant breathers control particles, adsorb water from the air, and can even control oil mist exhaust. High efficiency breathers can extend the life of all filter elements on hydraulic and lubrication systems by controlling airborne ingression, which is one of the major sources of particulate contamination. Spin-on and Desiccant breather suppliers offer a wide range of adaptors so that any reservoir or gearbox can be retrofitted.

Conclusion:

Filters are frequently considered as a necessary evil and are added to a system as an after thought instead of a valuable asset. Proper filter selection and sizing can provide years of reliable equipment operation and save money that is commonly lost battling contamination related failures. Approximately 75% of all hydraulic component failures are attributed to surface degradation caused by contamination and corrosion. The cost of installing and maintaining suitable filtration is estimated to be 3% of the cost associated with contamination related issues, the tip of the iceberg. Hidden costs of runaway contamination include; unplanned downtime, component replacement or repair expenses, fluid replacement, disposal, maintenance labor hours, troubleshooting time and energy, and waste.

Hydraulic & Lubrication Filters

Part II: Proper Filter Sizing

Every filter assembly has a minimum of two components, a filter housing and a filter element. Most filters include an integral bypass valve. This valve provides a parallel flow path to a filter element to protect it from collapsing, during cold start or once the element is heavily loaded with contaminant, by maintaining a desirable differential pressure across the element. Ideally, we want the flow to go through the filter element and thus the bypass valve is biased with a compression spring. The force of this spring keeps the bypass valve closed and for the most part fluid flows through the element. However, as the element gets dirty by collecting contaminants, the pressure drop across the element reaches the setting of the bypass valve at which time there are two paths for the fluid. At some point and time, the bypass valve may allow 95% of the fluid to go through it. Bypass valves have a cracking pressures typically range between 1,77 BAR (25 PSID) and 7 BAR (102 PSID) and It is dependent upon the location of a filter. Return line filters have a lower bypass setting than pressure line filters.

Generally, the sizing of a filter is very simple. This paper will make it even simpler for you. One must be careful as the filter will only perform adequately if it is maintained properly. It is a very good practice to change the filter element immediately when the differential pressure indicator signals the need for service. Differential pressure indicators should signal at 90% pressure drop of the bypass setting. An alternative to changing on indication is a preventive maintenance schedule. For example elements may be changed on a time interval regardless of element condition which will ensure that the filter will not consistently operate in a bypass condition. The key parameters to consider for proper filter selection and sizing are as follows:

1. MAXIMUM FLOW RATE THROUGH A FILTER

Maximum flow through a filter may be larger than the maximum flow from the pump. This happens due to presence of double acting hydraulic cylinders in a system. If your system contains such cylinders, you must calculate the maximum flow rate from the blind end of the cylinder and size the filter accordingly. This applies to return line filters.

2. MAXIMUM SYSTEM PRESSURE

Generally this depends upon the location of the filter. Pressure line filters usually see the full pressure setting of the relief valve, whereas the return line filter may see no more than 100 PSI pressure. An appropriately rated filter will serve the purpose. Occasionally a filter will experience pressure fluctuations and in such cases, fatigue rating of the filter housing must be considered. It is wise to consult your filter supplier for guidance in such conditions as the rated fatigue pressure is typically lower than the maximum rated operating pressure of a given filter.

3. MINIMUM & OPERATING FLUID TEMPERATURE (VISCOSITY)

Viscosity of most hydraulic fluids varies inversely with the temperature. The lower the temperature the higher the viscosity and vice-versa. During "cold start up" the viscosity of the fluid may be high enough to cause a very high pressure drop through the element. It will open the bypass valve for a short period of time while the fluid is being warmed up. In most cases, this condition is acceptable. See **Footnote** at the end for an explanation.

The temperature of fluid also has an effect on seals. Select seals that will withstand extreme temperature without failure.

4. ACCEPTABLE PRESSURE DROP

Do not consider the pressure drop of the housing and clean element in your system design. It is the best condition that system will ever see. Always consider the worst case scenario which will occur when the entire flow goes over the bypass valve. It is imperative that you consider the maximum pressure drop across the bypass valve at the maximum flow. For example, if a filter has a 40 PSID bypass valve, then it is likely that at the maximum flow this valve may have a pressure drop of 5 BAR (70 PSID) or higher. Ask for this information from your filter supplier and use it in your calculations. If you locate a filter in a return line and the full flow bypass valve pressure drop were to be 5 BAR (70 PSID) or higher then you must make sure all the components upstream of filter will not be affected. Shaft seals of a hydraulic motor have been known to fail due to excessive back pressure caused by a filter.

5. FILTER ELEMENT SERVICE INTERVAL

This is one of the most difficult criteria for filter selection which in most cases is based upon the design engineer's experience with a similar system. When an engineer selects a filter for a new machine or even an existing application, various manufacturers may give him data. Typical data should include; maximum flow rate, maximum pressure drop at a certain viscosity, Beta ratio (Filtration ratio) and dirt holding capacity. The last two values are obtained from the multi-pass test method per ISO 16889. The engineer must select an element with the highest capacity, all other things being equal. This will give him the maximum life between element changes in a given system.

Sometimes, an engineer may select a slightly larger filter to increase the filter element change interval. There is no right or wrong answer but under sizing a filter to save money is wrong in the long run. A smaller filter will be less expensive in the beginning, but the downtime it may cause due to frequent changes will reflect in poor productivity and throughput.

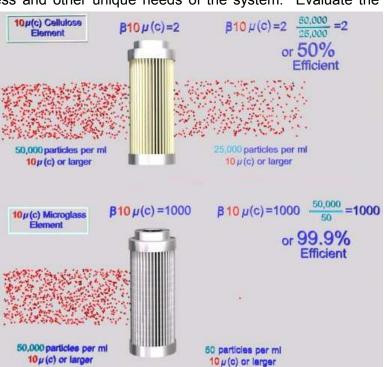
In a critical system, size a filter so that it gives you maximum life. A general rule of thumb is to change an element when the differential pressure indicates the need for a change or on a preventive maintenance schedule that can coincide with a planned shutdown regardless of the element condition.

FILTER ELEMENT SERVICE INTERVAL CONTINUED

For a simple calculation to determine element life in PSID, use the following formula:

EL = BYPASS SETTING IN PSID - (H + E) where,

EL is element life in PSID H is housing pressure drop in PSID


E is the clean element pressure drop at a flow and viscosity of interest.

A minimum rule of thumb is to allow 1 BAR (~15 PSID) life for a normal hydraulic system and for critical system, 1.7 BAR (~25 PSID). Selecting a larger filter will allow the element to last longer as the clean element pressure drop will be lower. Element life is defined by the amount of time, or contaminant the element will see before the indicator signals. Using a larger filter will yield a lower flow density through the element. Lower flow density means a lower flow rate per cm² (IN²) which means that the element pressure drop will rise at a slower rate as it loads with contaminant.

6. FILTER MEDIA SELECTION

There are several distinct differences between available media options. Media selection should be based upon the required cleanliness and other unique needs of the system. Evaluate the

Beta ratio (efficiency), dirt holding capacity, flow versus pressure drop characteristics, etc. A filter supplier should be able to supply more detailed test information in addition to what is supplied in their literature. Normally, wire mesh and cellulose media elements are nominally rated which means that they might be only 50% efficient at the rated micron size. Most glass media elements are considered to be "absolute" rated which means that they are 99.5% efficient at the rated micron size. Check the Beta ratio before selecting the media as all "10 micron" filter elements do not filter with the same Absolute rated high efficiency. efficiency glass media elements are the most suitable selection for achieving target ISO cleanliness codes on systems with components

that are sensitive to contamination (servo valves, piston pumps, etc). Consult component manufacturers for required fluid cleanliness as this can be directly correlated to warranty requirements. Filter suppliers can also be a valuable resource for determining overall system cleanliness guidelines.

FILTER MEDIA SELECTION CONTINUED

The majority of filter elements today are designed to be disposable, and utilize media constructed of synthetic or organic fibers. These elements are non cleanable and must be disposed off after their useful life. Some applications are fitted with stainless steel wire mesh media elements that yield a very low pressure drop and are somewhat cleanable. After they become loaded with contaminant they can be removed from the housing, cleaned and put back into the system. It is important to note that the cleaning process may be destructive which can compromise the element's efficiency and integrity (ultrasonic cleaning, high pressure steam cleaning). Size for size cleanable elements typically have a shorter life than their disposable counterparts made of glass or cellulose media. Wire mesh media elements are typically applied on systems with high viscosity fluids that do not require ultra clean fluid (gear box pressure line in steel mill).

7. FILTER ELEMENT COLLAPSE-BURST RATING

The full flow pressure drop through a bypass valve should be less than the collapse pressure (for outside to in flow) or burst pressure (for inside to outside flow) of the element. The element collapse/burst pressure should be at least 1.5 times the full flow pressure drop across the bypass valve. This will provide ample protection from collapse or burst even if there is a sudden increase in flow due to surge.

Applying an element with insufficient strength can result in a fully loaded element failing and releasing all of the previously captured contaminant along with filter element materials into the system. This sudden release of contaminant will cause catastrophic failure.

8. FLUID TYPE, PETROLEUM vs SYNTHETIC

Petroleum based fluids have a specific gravity of 0.86. Filters are generally sized for petroleum fluid in a hydraulic or lube system. Occasionally synthetic fluids are used in hydraulic systems, such as water glycol or high water based fluids. High water based fluids are constructed of 95% to 98% water with an additive package to provide lubricity, biocide, etc. Always consider the effect of specific gravity on pressure drop. Another issue with synthetic fluids is their compatibility with seals. Select the proper seal material as recommended by the fluid manufacturers.

Synthetic fluids can be highly corrosive (phosphate ester). Filter housings and element components may require special treatment or the use of stainless steel. It has also been proven that aggressive fluids can attack binding chemicals in non-woven filter media. Some synthetic fluids (fire resistant) can develop elevated acid levels (TAN) which can damage the filter media causing media migration and loss of efficiency. Communicating with your filter supplier when synthetic fluids are used is critical to proper material selection.

Certain high water based fluids have a very high pH value to keep growth of bacteria low. These fluids can react aggressively with aluminum parts in housings. For such applications, either avoid aluminum or anodize aluminum parts for added protection. Water glycol emulsions can fluctuate. It is wise to over size the filter assembly to avoid high differential pressure in the event that the emulsion yields higher than normal viscosity.

9. OVER SIZING FOR FUTURE FLEXIBILITY

Once a filter has been selected and sized based on fluid type, flow and desired cleanliness it is important to consider using a filter that is larger to allow for unforeseen system changes in the future. One of the key parameters mentioned earlier relates to fluid viscosity. If the selected filter is just large enough to handle the current system a change in fluid to a higher viscosity could result in unacceptable element life. Improving fluid cleanliness typically results in exponentially longer bearing and hydraulic component life. A common strategy for achieving lower ISO cleanliness codes ($4\mu_{co}/6\mu_{co}/14\mu_{co}$) is installing filter elements with a finer degree of filtration. If the filter housing is not large enough this might not be possible as the pressure drop can be prohibitive. Over-sizing the filter ahead of time will allow finer filter elements to be used in the future. The alternative is to install a new larger filter housing that might have a larger port to port dimension which will require additional pipe fitting.

Footnote:

On occasion the fluid in the system will be very cold (high viscosity). Under such conditions the fluid may bypass the element until the fluid temperature rises. Typically downtime before start up is less than 24 to 48 hours. When the system is shut down due to end of a task or end of a shift, it is very likely that the oil in the system is clean to acceptable standards. Upon start up the oil is still clean and stays clean until it warms up.

We recommend that the filter be sized for normal operating conditions and not for cold start ups. However, there are applications where bypass is not acceptable. In this case the filter must be sized for the worst condition. Such a filter will generally be large and should be fitted with a high collapse element and no bypass.

Conclusion:

Filters are frequently considered as a necessary evil and are added to a system as an after thought instead of as a valuable asset. Proper filter selection and sizing can provide years of reliable equipment operation and save money that is commonly lost battling contamination related failures. Approximately 75% of all hydraulic component failures are attributed to surface degradation caused by contamination and corrosion. The cost of installing and maintaining suitable filtration is estimated to be 3% of the cost associated with contamination related issues, the tip of the iceberg. Hidden costs of runaway contamination include; unplanned downtime, component replacement or repair expenses, fluid replacement, disposal, maintenance labor hours, troubleshooting time and energy, and waste.

Dynafuzz Media

Hy-Pro Dynafuzz

Filter elements for power generation and other fire resistant applications

High Performance protection against corrosive fluids & high temperatures. Dynafuzz upgrades from glass media

Performance Temperature:

-20f to 250f, -29c to 120c (viton), Element collapse up to 3000 psid (210 bar)

Media Description

EHC systems commonly use phosphate ester which can develop high TAN (total acid number) when exposed to water. The acid attacks the binding agent in glass fiber media. The result is lower efficiency and media migration, or fiber shedding, where the filter is generating contamination. Dynafuzz media utilizes sintered stainless steel fibers which are impervious to the acidic compounds that form in EHC systems.

Non-compressible media yields long on-stream life in high differential pressure applications.

Not affected by water & gelatinous contamination.

Absolute ratings from $\beta 2 = 200$, $\beta 4.4[c] = 1000$, and $\beta 4.4[c] = 500$ (DFE efficiency rating)

Applications

Hydraulic applications where fire resistant fluids are utilized. Including EHC for power generation, jack-up/lift-up system for turbine start up, governor control circuit for turbine speed. Primary metals applications.

Upgrades from glass media available for the following manufacturers:

GE	Westinghouse	ABB
Pall	Parker	Hilco
Kaydon	Indufil	

Dynamic Filter Efficiency Testing

DFE rated elements perform true to rating even under demanding variable flow and vibration conditions.

Today's industrial and mobile hydraulic circuits require elements that deliver specified cleanliness under all circumstances. Wire mesh supports the media to ensure against cyclical flow fatigue, temperature, and chemical resistance failures possible in filters with synthetic support mesh.

Cross sectional view of -3SF code Dynafuzz media

FILTRATION

Typical Elements Upgraded to Dynafuzz

Pall
HC9401FDP13Z
HC9401FDP13ZYGE
HC9401FDT13Z
HC9401FDT13ZYGE
HC9601FDP11Z
HC9601FDP11ZYGE
HC9601FDT11Z
HC9601FDT11ZYGE
HC9601FDP16Z
HC9601FDT16Z
HC9601FDP21ZYGE
HC9601FDT21Z
HC9601FDT21ZYGE
HC9651FDP8Z
HP9651FDT8Z
HP9651FDP16Z
HP9651FDT16Z

Hy-Pro

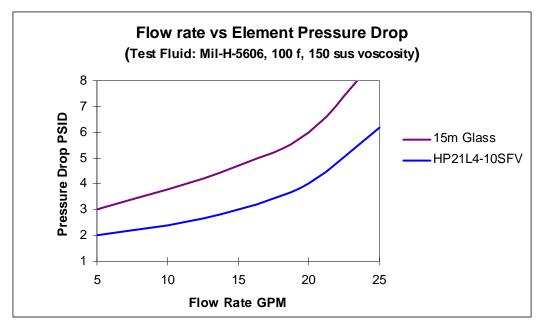
HP41L13-3SFV HP41L13-3SFV HP41L13-10SFV HP41L13-10SFV HP61L11-3SFV HP61L11-3SFV HP61L11-10SFV HP61L11-10SFV HP61L16-3SFV HP61L16-10SFV HP61L21-3SFV HP61L21-10SFV HP61L21-10SFV HP51L8-3SFV HP51L8-10SFV HP51L16-3SFV HP51L16-10SFV

Pall

HC9021FDP4Z HC9021FDP4ZYGE HC9021FDT4Z HC9021FDT4Z YGE HC9021FDP8Z HC9021FDP8ZYGE HC9021FDT8Z HC9021FDT8Z

General Electric

234A6578P0002 234A6579P0002 254A7229P0005 254A7729P0008 254A7220P0008 258A4860P002 258A4860P004 361A6256P010 B984C302P012


Hy-Pro

HP21L4-3SFV HP21L4-3SFV HP21L4-10SFV HP21L4-10SFV HP21L8-3SFV HP21L8-3SFV HP21L8-10SFV HP21L8-10SFV

Hy-Pro

HPQ210128L13-3SFV HPQ210129L13-3SFV HPQ210130L13-3SFV HPQ210131L13-3SFV HPQ210132L13-3SFV HPQ210133L11-3SFV HPQ210134L21-3SFV HPQ210135L18-3SFV HPQ21L4-10SFV

Typical Pressure Drop Performance vs Glass

Hy-Pro filters are tested to the latest industry standard ISO16889 (replacing ISO4572) resulting in A new scale for defining particle sizes and determining filtration ratio (formerly known as beta ratio) New (ISO16889) vs Old (ISO4572) size comparison

Bx(c)=1000 (ISO16889)	2.5	5	7	12	22
Bx=200 (ISO4572)	<1	3	6	12	25

Evolution of Media: Hy-Pro G7 Dualglass Upgrade from Cellulose

1

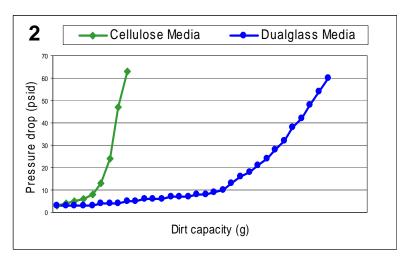
Glass media has superior fluid compatibility versus cellulose with hydraulic fluids, synthetics, solvents, and high water based fluids. Glass media also has a significant filtration efficiency advantage over cellulose,

and is classified as "absolute" where cellulose media efficiency is classified as "nominal".

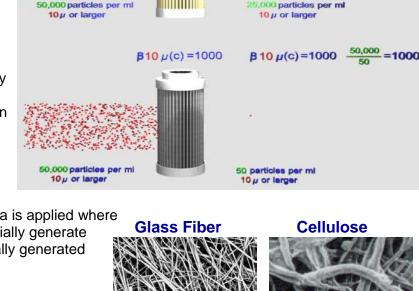
Elements of different media with the same "micron rating" can have substantially different filtration efficiency. Figure 1 provides a visual representation of the difference between absolute and nominal filter efficiency.

The illustrated glass element would typically deliver an ISO Fluid Cleanliness Code of 18/15/8 to 15/13/9 or better depending upon the system conditions and ingression rate. The cellulose element would typically achieve a code no better than 22/20/17.

Runaway contamination levels at $4\mu_{[c]}$ and


 $6\mu_{[c]}$ are very common when cellulose media is applied where a high population of fine particles exponentially generate more particles in a chain reaction of internally generated contaminate.

Inorganic glass fibers are much more uniform in diameter and are smaller than cellulose fibers. Organic cellulose fibers can be unpredictable in size and effective useful life. Smaller fiber size means more fibers and more void volume space to capture and retain contaminate.


Upgrading to Hy-Pro G7 Dualglass

Glass media has much better dirt holding capacity than cellulose. When upgrading to an absolute efficiency glass media element the system cleanliness must be stabilized. During this clean-up period the glass element halts the runaway contamination as the ISO cleanliness codes are brought into the target cleanliness range. As the glass element removes years of accumulated fine particles the element life might be temporarily short.

Once the system is clean the glass element can last up to 4~5 times longer than the cellulose element that was upgraded as shown in figure 2.

B10 µ (c) =2

 $\mu(c)=2$

В

50,000

=2

Cleaner Fluid . . . Longer Component & Fluid Life . . . More Uptime!

Koller Collact Bearing					
Current	Target	Target	Target	Target	
ISO Code	ISO Code	ISO Code	ISO Code	ISO Cod	е
	2 x Life	3 x Life	4 x Life	5 x Life	ļ
28/26/23	25/22/19	22/20/17	20/18/15	19/17/14	1
27/25/22	23/21/18	21/19/16	19/17/14	18/16/13	3
26/24/21	22/20/17	20/18/15	19/17/14	17/15/12	2
25/23/20	21/19/16	19/17/14	17/15/12	16/14/11	I
25/22/19	20/18/15	18/16/13	16/14/11	15/13/10)
23/21/18	19/17/14	17/15/12	15/13/10	14/12/9	
22/20/17	18/16/13	16/14/11	15/13/10	13/11/8	
21/19/16	17/15/12	15/13/10	13/11/8	-	
20/18/15	16/14/11	14/12/9			Т
19/17/14	15/13/10	13/11/8	-	Current	١.
18/16/13	14/12/9	-		ISO Code	
17/15/12	13/11/8	-		28/26/23	-
16/14/11	13/11/8	-	-		-
15/13/10	13/11/8	-		27/25/22	-
14/12/9	13/11/8	-		26/24/21	
, 12/0				25/23/20	

Roller Contact Bearing

Laboratory and field tests prove time and again that Hy-Pro filters consistently deliver lower ISO fluid cleanliness codes.

Improving fluid cleanliness means reduced downtime, more reliable equipment, longer fluid life, fewer maintenance hours, and reduces costly component replacement or repair expenses.

Hydraulic Component

Develop a Fluid Cleanliness Target

Hy-Pro will help you develop a plan to achieve and maintain target fluid cleanliness. Arm yourself with the support, training, tools and practices to operate more efficiently, maximize uptime and save money.

Current	Target	Target	Target	Target
ISO Code				
	2 x Life	3 x Life	4 x Life	5 x Life
28/26/23	25/23/21	25/22/19	23/21/18	22/20/17
27/25/22	25/23/19	23/21/18	22/20/17	21/19/16
26/24/21	23/21/18	22/20/17	21/19/16	21/19/15
25/23/20	22/20/17	21/19/16	20/18/15	19/17/14
25/22/19	21/19/16	20/18/15	19/17/14	18/16/13
23/21/18	20/18/15	19/17/14	18/16/13	17/15/12
22/20/17	19/17/14	18/16/13	17/15/12	16/14/11
21/19/16	18/16/13	17/15/12	16/14/11	15/13/10
20/18/15	17/15/12	16/14/11	15/13/10	14/12/9
19/17/14	16/14/11	15/13/10	14/12/9	14/12/8
18/16/13	15/13/10	14/12/9	13/11/8	-
17/15/12	14/12/9	13/11/8	-	-
16/14/11	13/11/8	-	-	-
15/13/10	13/11/8	-	-	-
14/12/9	13/11/8	-	-	-

New Oil is Typically Dirty Oil . .

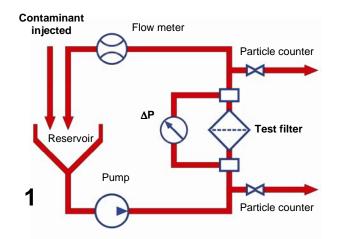
New oil can be one of the worst sources of particulate and water contamination.

25/22/19 is a common ISO code for new oil which is not suitable for hydraulic or lubrication systems. A good target for new oil cleanliness is 16/14/11.

What is DFE (Dynamic Filter Efficiency)?

All hydraulic and lube systems have a critical contamination tolerance level that is often defined by, but not limited to, the most sensitive system component such as servo valves or high speed journal bearings. Component manufacturers provide fluid cleanliness levels, per ISO4406 or ISO4406:1999, required for optimum performance and predictable life. An operating system is at risk whenever the critical contamination level is exceeded. Contamination levels determine the individual component's wear rate (useful life) and ability to perform as intended (functionality).

System design, filter performance and maintenance practices largely determine the contamination level in a system. Filters are expected to maintain contamination below critical tolerance levels. Filter performance in a dynamic operating system is variable based upon flow rate and flow


density, changes in flow rate (duty cycle), viscosity, fluid and structure borne vibration (Hz), contamination levels, ingression rate and several other conditions. All filters are subjected to some form of system dynamics. Hydraulic filters encounter frequent and rapid changes in flow rate accompanied by frequency changes. Lube filters typically experience dynamic conditions during start up and shut down. Two key characteristics of filter performance are capture efficiency and retention efficiency. Capture efficiency can be thought of simply as how effectively a filter captures particles while retention efficiency is a measure of how effectively that filter retains the particles it has captured. A filter is not a black hole, and its performance must not be based solely on how efficiently it captures particles. If not properly designed and applied, a filter can become one of the most damaging sources of contamination in a system.

The Dynamic Filter Efficiency Test (DFE) is the evolution of hydraulic and lube filter performance testing. The DFE test goes further than current industry standards to bridge the gap between lab and real world by inducing dynamic duty cycles and measuring real-time performance before, during and after the cycles. DFE testing quantifies both capture and retention efficiency in real time so that we may predict the worst case fluid cleanliness along with average fluid cleanliness. The DFE test method was pioneered in 1998 during a joint effort between Scientific Services Inc (SSI) and Hy-Pro Filtration.

Current Filter Performance Testing Methods

Manufacturers of filter assemblies and filter elements use an industry standard test to rate filter efficiency and dirt holding capacity of filter elements under ideal lab conditions. The test protocol is ISO standard ISO16889 multi-pass, and was updated from ISO 4572 in 1999. The standard provides a repeatable test

method where identical filters should produce like results when tested on various test stands. Figure 1 depicts the test circuit where MIL-H-5606 hydraulic fluid is circulated at a constant flow rate in a closed loop system with the test filter and on-line particle counters before and after the filter. Contaminated fluid with a known quantity of contaminant is added to the system before the upstream particle counter, and at a constant rate. Small amounts of fluid are removed before and after the filter for particle counting to calculate the filter efficiency (capture). The capture efficiency is expressed as the Filtration Ratio (Beta) which is the relationship between the number of particles greater than and equal to a specified size $(x\mu_{icl})$ counted before and after the filter.

Filtration Ratio (Beta) per ISO16889:

quantity particles $>= x\mu_{[c]}$ upstream of filter

 $\beta_{x[c]} =$ quantity particles >= $x\mu_{[c]}$ downstream of filter

Example: $\beta_{7[c]} = 600/4 = 150$, Filtration Ratio (Beta): $\beta_{7[c]} = 150$.

In the example, 600 particles greater than or equal to $7\mu_{c]}$ were counted upstream of the filter and 4 were counted downstream. This Filtration Ratio is expressed as "Beta $7_{c]} = 150$ ". The $_{c]}$ is referred to as "sub c". The sub c is used to differentiate between multi-pass tests run per the current ISO16889 multi-pass test with new particle counter calibration per ISO11171 from ISO4572. Filtration Ratio expressed or written without the "sub c" refers to the antiquated ISO4572 multi-pass test superseded by ISO16889.

The efficiency may also be expressed as a percentage by converting the Filtration Ratio:

 $\beta 7_{[c]} = 150 = (\beta - 1)/\beta \times 100$, Efficiency percentage of $\beta 7_{[c]} = 150 = (150-1)/150 \times 100 = 99.33\%$. The test filter is 99.33% efficient at capturing particles $7\mu_{[c]}$ and larger.

The DFE Multi-pass Testing Method

DFE multi-pass enhances the industry standard by inducing dynamic conditions (duty cycle) and measuring the affects of the duty cycle in real time instead of looking at normalized numbers over a time weighted average. DFE also addresses the inherent problem of ISO16889 where fluid is added and removed throughout the test, thus creating a small mathematical error that must be corrected in final calculations. In addition to the capture efficiency, DFE also quantifies retention efficiency in real time. A filter that does not properly retain previously captured contaminant can be identified. The phenomenon of releasing captured contaminant is called unloading, and can result in temporary contamination levels that are well above the critical contamination tolerance level of a system.

The DFE test circuit also utilizes upstream and downstream particle counters, test filter and injection point before the upstream particle counter much like ISO16889. That is where the similarity to ISO16889 ends. The DFE flow rate is not constant like ISO16889, but rather hydrostatically controlled so flow changes can be made quickly while maintaining full system flow through the test filter. Particle counter sensor flows remain constant during all particle counts and no intermediate reservoirs are used to collect the particle counter flow before it is counted. This ensures that the fluid counted is representative of the system contamination level. Counts are taken before, during, and after each flow change. The total number of particle counts is determined by the duty cycle of the specific test. The efficiency results are reported in Filtration Ratio (Beta), efficiency percentage and actual particle levels per milliliter.

The raw data is digitally tagged so filter efficiency may be reported for various combinations of flow conditions as a time weighted average and specific ranges related to differential pressure across the filter element. Some typical combinations include all maximum flow counts, all low flow counts and all flow change counts (low to high or high to low). Rapid particle counting with proper timing is how DFE allows Hy-Pro to analyze and understand both capture efficiency and retention efficiency characteristics of each filter tested while contaminant is being introduced upstream of the filter or when there is no contaminant being injected.

The DFE Testing Method - Quantifying Contaminant Capture and Retention

Figure 2 compares the performance of two identical high efficiency glass media filter elements produced

by the same manufacturer, one of which was tested per ISO16889 multi-pass and the other per the DFE multi-pass method. The graph expresses the actual number of particles $6\mu_{c}$ and larger counted downstream of the filter element from several data points during the tests.

Filter A2 was tested at a constant flow rate and maintained a steady efficiency throughout the test. Filter A1 was cycled between the max rated flow rate and half of rated flow with a duty cycle consistent with that of a hydraulic system. The downstream counts for Filter A1 varied and were highest during changes from low flow to high flow. The peaks represent counts taken during flow change and the valleys represent counts 6μ_[c] particles/ml taken after each flow change. The alternating high peaks represent counts taken during changes from low flow to high flow. As the amount of contaminant captured by Filter A1 increased, the downstream counts increased most dramatically during the flow changes from low flow to high flow. Filter element A1, not properly designed to retain previously captured contaminant during dynamic system conditions, can become a dangerous source of contamination as it captures and then releases concentrated clouds of contaminated fluid.

Filter Element	A1	A2
Element Rating	β7 _[c] > 1000	$\beta 7_{[c]} > 1000$
High Flow (Ipm)	112	112
Low Flow (lpm)	56	-
Contaminant Injection Rate	3 mg/l	3 mg/l

Particle counts downstream of filter 6µ_{fcl}

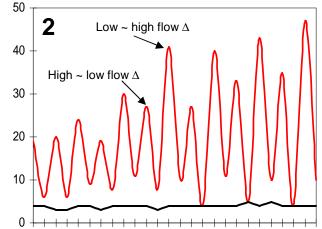
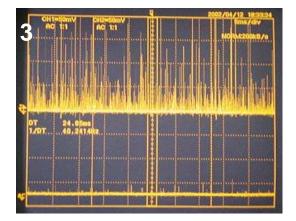
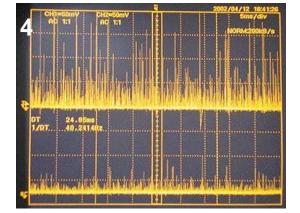




Figure 3 shows the particle counter raw data (top-upstream, bottom-downstream) for Element A1 before a change from low flow to high flow and Figure 4 shows the particle counter data for Element A1 during a change from low flow to high flow. The downstream particle count trace during the change reveals a much higher quantity of smaller particles and larger particles that did not pass the element before the dynamic system condition. This phenomenon can best be described as "contaminant unloading". As the filter element captures more dirt, greater amounts may be released back into the system that it is installed to protect when the element is subjected to a dynamic flow condition and change in differential pressure across the element. Unloading may also occur when the flow rate changes from high flow to low flow, represented by the alternating smaller peaks in Figure 3. The filter element typically recovers shortly after the dynamic condition, but highly contaminated clouds of fluid from contaminant unloading can cause severe component damage and unreliable system performance.

The DFE Testing Method - Quantifying Contaminant Capture and Retention

Excessive unloading in the early stage of element life may be symptomatic of an element that will eventually fail and lose it's efficiency all together (media breakdown). Filter element B (graph 9) performed true to it's rating under the ISO16889 multi-pass and achieved a beta ratio in excess of $\beta 7_{[c]} > 1000$. However, when an identical element was tested per DFE multi-pass the beta ratio slipped well below the element rating during dynamic conditions (graph 11). Filter media selection is often based on the beta ratio rating published by filter manufacturers. The beta ratio is the product of the ISO16889 multi-pass test and does not account for the dynamic duty cycle of hydraulic systems since the flow rate condition remains constant throughout the test. A common result is a system that suffers from premature contamination related failures, even though it is protected by filters that in theory should prevent such failures, causing reduced uptime, unreliable equipment performance, and expensive component repair and replacement costs.

Figure 5 compares the performance of two identical Hy-Pro filter elements manufactured with G7 Dualglass media which have been designed and developed per the DFE multi-pass test method. All Hy-Pro elements that utilize the G7 or higher media carry the Hy-Pro DFE rating.

Filter Element	Hy-Pro 1	Hy-Pro 2
Element Rating	β7 _[c] > 1000	β7 _[c] > 1000
High Flow (lpm)	112	112
Low Flow (lpm)	56	-
Contaminant Injection Rate	3 mg/l	3 mg/l

Although the contaminant unloading effect is still evident, the unloading is insignificant as filter element Hy-Pro 1, tested per DFE, performed true to it's ISO16889 multi-pass rating of $\beta 7_{[c]} > 1000$ even during dynamic flow conditions.

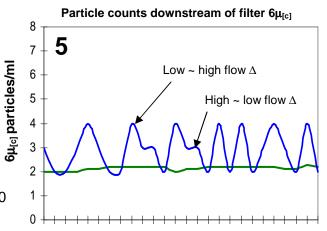
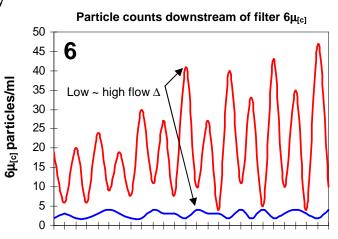



Figure 6 compares the performance of filter Element A1 and Hy-Pro 1 (DFE rated). Both elements demonstrated excellent particle capture performance during the ISO16889 and DFE testing. The DFE rated Hy-Pro element yielded much more stable particle counts downstream of the element and more consistent efficiency during the dynamic flow conditions. Improving particle retention results in more predictable fluid cleanliness levels and a system that can continually

operate below the critical contamination tolerance level.

Filter Element	Element A1	Hy-Pro 1
Element Rating	β7 _[c] > 1000	β7 _[c] > 1000
High Flow (Ipm)	112	112
Low Flow (lpm)	56	56
Contaminant Injection Rate	3 mg/l	3 mg/l

The DFE Multi-pass Testing Method - Cold Start Contaminant Retention

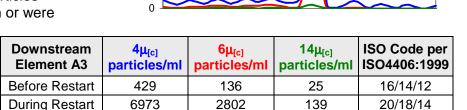
Once the element has captured enough contaminant to reach approximately 90% of the terminal ΔP , dirty filter indicator setting, the main flow goes to zero and the injection system is turned off for a short dwell period. The main flow pump is turned on and rapidly achieves maximum element rated flow accompanied by real time particle count to measure retention efficiency of the contaminant loaded element.

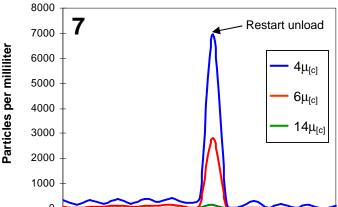
After the start-up simulation the system continues to perform the test duty cycle to further monitor the retention efficiency of the filter element after a restart. The purpose of this portion of the DFE test is to quantify how well the filter element retains the contaminant it has previously captured when subjected to a

start-up condition. The dwell before the restart may be a function of time or a function of system temperature to simulate cold restart with an element that has captured a substantial amount of contaminant.

Figure 7 and the table below it show the performance of an element, from the same lot as filter elements A1 & A2 from figure 2, that was subjected to the DFE restart test. During the restart, particle counts after the filter increased by a factor of 20 on the $6\mu_{[c]}$ channel, and the ISO codes increased by 4 on the $4\mu_{[c]}$ and $6\mu_{[c]}$ channels. During the restart test there is no contaminant being injected so any particles measured were already in the system or were

released by the element (unloading). The result is a temporary state of highly contaminated fluid that has resulted because the filter element did not properly retain the dirt.


Figure 8 and the table below it

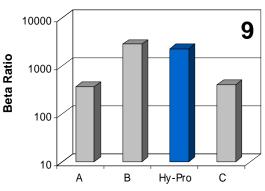

show the performance of Hy-Pro element 3, which is from the same lot as Hy-Pro 1 and 2 from figure 5. The unloading is evident in the DFE rated Hy-Pro 3 element, but the affect is greatly reduced. Element A3 (figure 7) unloaded 7 times more particles $6\mu_{[c]}$ and larger than did Hy-Pro 3, and 35 times more particles $14\mu_{[c]}$ and larger. The DFE rated Hy-Pro element had much higher retention efficiency than the filter designed and validated only to ISO16889 multi-pass.

If we assume that a filter is like a black hole where all of the captured contaminant will remain trapped indefinitely we are operating with a false sense of security. If you are only discussing removal

(capture) efficiency when it comes to filter elements you need to be looking at particle retention efficiency as well.

Particle counts downstream of filter

Downstream Element Hy-Pro 3	4μ _[c] particles/ml	6µ _[c] particles/ml		ISO Code per ISO4406:1999
Before Restart	75	10	1	13/11/7
During Restart	2994	404	4	19/16/9


0

J

DFE - Comparison Between DFE and ISO 16889 Multi-Pass Test Results

Figure 9 shows the performance of like elements produced by three different manufacturers that were tested per ISO 16889 multi-pass. The results were expressed as a time weighted beta ratio. Element B had a better capture efficiency than the Hy-Pro element in the constant flow test environment of ISO 16889. All of the elements tested were true to their Beta Ratio of either $\beta 5_{cl} > 200$ or 1000.

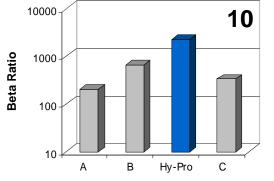
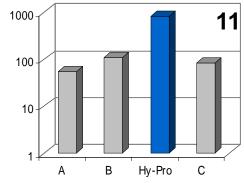


Figure 10 shows the time weighted performance of the like elements tested per DFE multi-pass. To illustrate the performance differences between DFE and ISO16889, the two tests were run similarly with the only difference being the DFE test flow rate. The flow through the element was cycled up and down the operating range to simulate a real world hydraulic system duty cycle. The time weighted beta ratio for elements A and B was below the rated beta ratio while elements Hy-Pro and C performed true to rating.


In figure 11 the particle counts taken during flow change have been isolated and then averaged to yield a beta ratio during transient flow. Since the DFE test has shown that filter element performance is at it's worst during flow changes isolating those sequences can help predict performance in dynamic flow systems. It is with this graph that we see how overall filter performance can be affected by systems with cyclic flow. Element B had a beta ratio in excess of $\beta 7_{[c]} > 2000$ when tested per ISO16889 (figure 9). However, figure 11 shows the average

Element B had a beta ratio in excess of $\beta 7_{[c]} > 2000$ when tested per ISO16889 (figure 9). However, figure 11 shows the average beta ratio of Element B during variable flow to be less than $\beta 7_{[c]} > 100$. The Hy-Pro element beta ratio was in excess of $\beta 7_{[c]} > 800$ and was the only one with a beta ratio greater than 100. The Hy-Pro performance in figure 11 illustrates why Hy-Pro is committed to the DFE test method for design and development.

Relying solely on ISO16889 to predict how filter elements will perform in systems with dynamic flow conditions means that we are making decisions on filter performance without all of the available information. The current industry standard test for hydraulic and lube filter performance (ISO 16889) is a good tool for predicting performance of off-line filters and circulating systems, but does not accurately represent the stress of a hydraulic circuit with dynamic flow conditions or a lube system cold start condition. The first step to fixing a problem is acknowledging that a problem actually exists, and without DFE testing it is difficult to truly predict actual filter performance in a dynamic system.

Real Time Flow Δ Beta Ratio Comparison per DFE multi-pass for $\beta 5\mu_{fcl} > 200$ or 1000 filter element.

Water Removal Elements

Water Removal

Available for all spin-on and cartridge filter elements.

Media code "A" specifies G7 Dualglass media co-pleated with water removal scrim to produce a filter that can remove water while maintaining $\beta x_{[c]} = 1000$ efficiency down to $1\mu / 2.5\mu_{[c]}$.

WATER CONTAMINATION

Free and dissolved water in hydraulic and lube systems leads to bearing fatigue, accelerated abrasive wear, corrosion of metal surfaces, increased electrical conductivity, viscosity variance, loss of lubricity, and fluid additive breakdown. Sources include condensation, reservoir leakage, worn actuator seals, heat exchanger leakage, new oil and more.

Filter elements with water removal media can bring high water counts down. Most water removal elements utilize low efficiency (nominally rated) media. We combine the best of both worlds by removing the water while maintaining our $\beta x_{[c]} = 1000$ particulate removal efficiency and ensuring that none of the gel particles are released back into the system. Water removal is available with any of our glass media selections from 1 μ to 40 μ . There is a price adder to the glass element price so please consult the price list or call Hy-Pro before quoting.

CAPACITY BY COMMON SERIES

Hy-Pro	Capacity H ₂ O		
Element	Liters	Ounces	
HP75L8-*AB	0.7	23	
HP101L18-*AB	2.5	84	
HP101L36-*AB	5.1	172	
HP102L18-*AB	1.9	65	
HP102L36-*AB	3.3	112	
HP83L16-*AB	1.7	57	
HP83L39-*AB	3.6	123	
HP8314L39-*AB	5.9	200	
HP8310L39-*AB	6.2	207	
HPKL9-*AB	0.6	21	
HP60L8-*AB	0.5	15	
HP25L9-*AB	0.4	12	

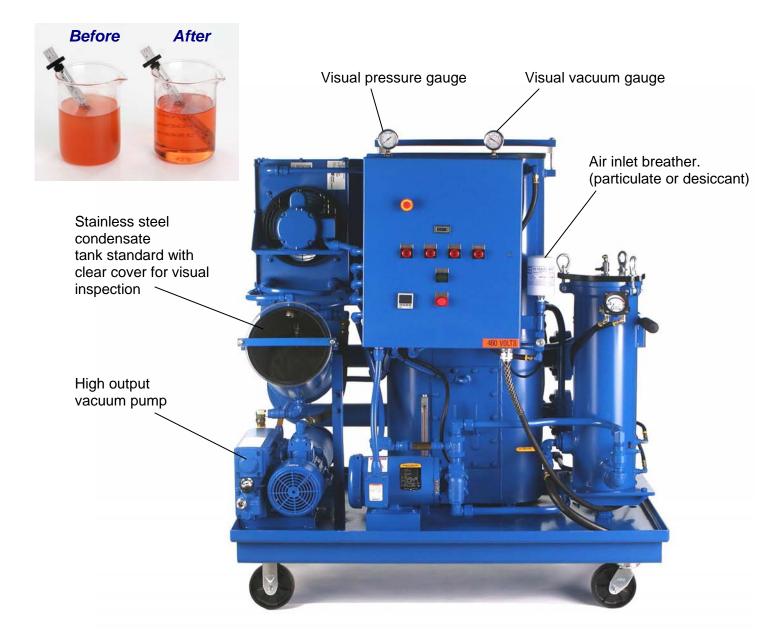
WATER REMOVAL APPLICATION - POWER GENERATION BULK OIL CONDITIONING

Fluid volume: 250 gallons, 1000 liters Initial ppm H₂O: 12000 ppm, Final ppm H₂O: < 50 ppm

A power plant planned to use a vacuum dehydrator to remove the water from 1000 liters of hydraulic oil. Dehydrator rental was expensive and required one month minimum. As an alternative Hy-Pro element HP8314L39-6AB (A media code = G7 Dualglass + water removal) was applied. Hy-Pro estimated that 2 elements would bring the ppm levels below the target. After the second element was removed the ppm level was below 50 ppm H₂O. A third element was installed but did not reach terminal Δp before the fluid was determined to be free of water and ready for use.

29

Water PPM ~ Ounce conversion: Moisture (PPM) X Fluid volume (Gallons) X .0001279 = Ounces of Water



- Remove Free & Dissolved Water down to 20 PPM (0.002%)
- Remove Free & Dissolved gasses
 - Standard Flow range 5~60 gpm,19~225 lpm (larger units available)
 - Visually Monitor Fluid and Process through Clear Chamber Covers
- High Water Removal Efficiency
- Adjustable vacuum setting valve
- High Efficiency Particulate Filtration
- Low Watt Density Heaters
- Dimensional and Arrangement
 Design Flexibility
- Condensate Water Holding Tank
 with Automatic Drain Standard
- Electrical Phase Reversal Standard
- Optional PLC or VFD Control

VAC-U-DRY has the ability to develop higher vacuum and flow for speed of dissolved water and gas removal, and the best negative head capability.

Flexibility of design dimensions & process arrangement is an available option. We'll listen then customize a VAC-U-DRY for your specific application.

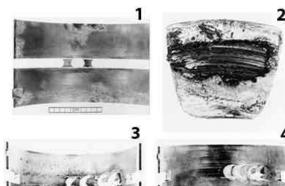
Model	Length Inch (mm)	Width Inch (mm)	Height Inch (mm)	Weight Lbs (Kg)
V3	36 (914)	32 (813)	48 (1219)	800 (363)
V5	48 (1219)	32 (813)	48 (1219)	1020 (464)
V10	56 (1422)	32 (813)	60 (1524)	1150 (523)
V15	56 (1422)	32 (813)	60 (1524)	1200 (545)

User friendly . . . Clear vacuum chamber and condensate tank covers allow you to see the performance (collected water).

Clear vacuum chamber and condensate tank covers for visual monitoring of dehydration process.

All condensate _ wetted parts are 304 stainless steel (standard)

Top loading particle filter assembly with — coreless filter element and true Δp gauge


Unit as shown features air cooled condenser

Low watt density fin tube heaters prevent coking with no direct contact between heating element and fluid.

Solid non-shedding · wheels and forklift guides standard Standard Re-circulating line assists with cold start and throttle system return flow rate.

Width Weight Length Height Model Inch (mm) Inch (mm) Inch (mm) Lbs (Kg) 1350 (613) V20 72 (1829) 36 (914) 60 (1524) V30 84 (2134) 40 (1016) 60 (1524) 1500 (681) V45 84 (2134) 48 (1219) 60 (1524) 1700 (772) V60 84 (2134) 60 (1524) 60 (1524) 1980 (900)

The Harmful Affects of Water in Oil

Water is one of the most common and most damaging contaminants found in a lube or hydraulic system. Continuous or periodic high water levels can result in damage such as:

- Metal Etching (corrosion)
- Abrasive wear in hydraulic components
- **Dielectric Strength Loss**
- Fluid Breakdown
- Additive precipitation and oil oxidation
- Reduction in lubricating properties

75% of All Hydraulic Component failures are **Caused by Fluid Contamination**

The effects of moisture in your oil systems can drastically reduce on stream plant availability. Bearing life and critical component life is greatly reduced by moisture levels above and within the saturation point. Many systems run constantly above this point due to inefficient dehydration technologies and high ingression.

Fluid	Saturation PPM	Saturation %
Hydraulic	300	0.03%
Lubrication	400	0.04%
Transformer	50	0.005%

This develops acidity and loss of lubrication properties. Free water occurs when oil becomes saturated

and cannot dissolve any additional water. This water makes the oil appear cloudy and can even be seen in puddle form at the bottom of a reservoir. Water which is absorbed into the oil is called dissolved water. At elevated temperatures, oil has the ability to hold more water in the dissolved state due to the expansion of the oil molecules. As the oil cools, it loses its capacity to hold water and free water will appear where previously not visible. Fluid type also determines saturation point in addition to temperature changes.

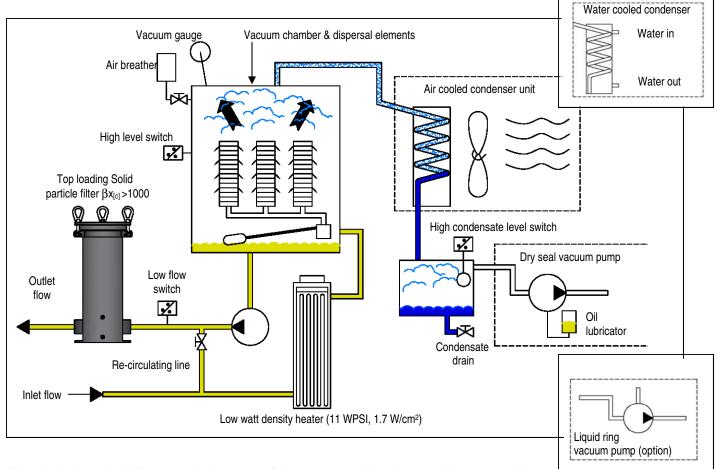
250		earance Normal issolved Water)	Appearance Cloudy (Free Water)
150			
0	0.01		

New Moisture Level PPM (%)

		1000 (0.1%)		500 (0.05%)		250 (0.025%)		100 (0.01%)		50 (0.005%)	
Ð		Rolling Element	Journal Bearing	Rolling Element	Journal Bearing	Rolling Element	Journal Bearing	Rolling Element	Journal Bearing	Rolling Element	Journal Bearing
Moistur (PPM)	5000	2.3	1.6	3.3	1.9	4.8	2.3	7.8	2.9	11.2	3.5
M PF	2500	1.6	1.3	2.3	1.6	3.3	1.9	5.4	2.4	7.8	2.9
	1000			1.4	1.2	2	1.5	3.3	1.9	4.8	2.3
ntrent Level 500	500				1.4	1.2	2.3	1.6	3.3	1.9	
ບີ	Component Life 250 Extension by Removing Water*						1.5	1.3	2.3	1.6	
	100	Extension by Removing Water							1.4	1.2	

*courtesy of Noria

Aim Dryer with the VAC-U-DRY Dehydrator


Centrifuges only remove free water that is well above the saturation point leaving harmful quantities of free and dissolved water in the oil. Desorbers and coalescing filters can achieve water levels of 150 ppm, but the process is much slower than vacuum dehydration. VAC-U-DRY rapidly removes water down to 5 ppm (0.0005%) with efficiency to control water levels under normal ingression and regain control of high ingression conditions in hours instead of weeks or months.

Increase "Must Have" Plant Reliability

Contaminant Type	VAC-U-DRY Capability		
Water	Remove 100% free water 90% + dissolved water		
Particulate	ISO Cleanliness Code 13/11/8 per ISO4406:1999		
Gases	Remove 100% free gases 90% + dissolved gases		
Air	Remove 100% free air 90% + dissolved air		

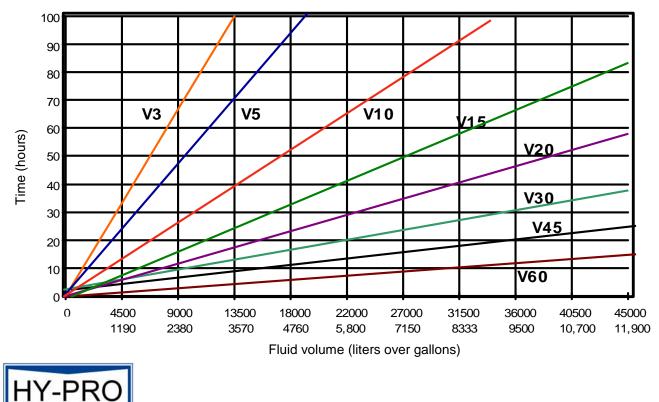
The VAC-U-DRY Purification Process and Flow Diagram

Contaminated oil is drawn into the VAC-U-DRY purifier by a high output vacuum pump. The oil passes through the low watt density heater where heated to optimum temperature for the dehydration process (150°F, 66°C). The oil enters the vacuum chamber passing through specially designed dispersal elements which create a thin film of oil that is exposed to the vacuum. The water is vaporized and then drawn into the condenser where it becomes liquid and drains into the condensate tank.

The dehydrated oil flows to the bottom of the vacuum chamber and is removed by the discharge pump. The oil is pumped through the high efficiency particulate filter assembly ($\beta x_{[c]} > 1000$) and returned to the system. The re-circulating line helps the VAC-U-DRY reach optimum temperature in cold start situations and can be used to throttle machine inlet and outlet flow.

Feature	Description	
Condensate wet	Better fluid compatibility with no price	Í
parts stainless	adder (304 stainless standard)	
Flexible design	Flexible dimensions, process setup	
& dimensions	to suit your application (others won't)	
Programmable	Precise temperature control, prevents	
thermostat	overheating, unattended operation	
	27" max Hg vacuum yields rapid water	
Vacuum process	and gas removal. Operational up to	_
	20 meter (60 ft) negative head	
	Clear covers on vacuum chamber	
Visual access	and condensate tank allow visual	
	inspection of oil condition and process	

After

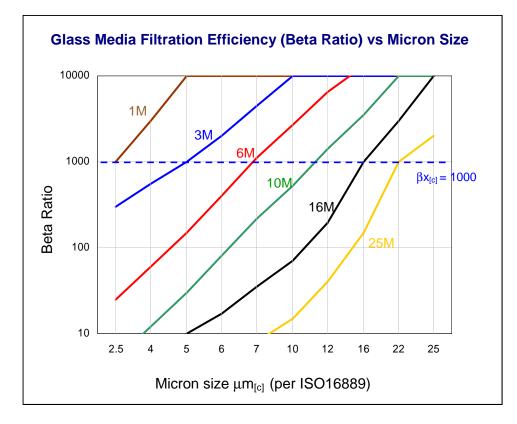

Before

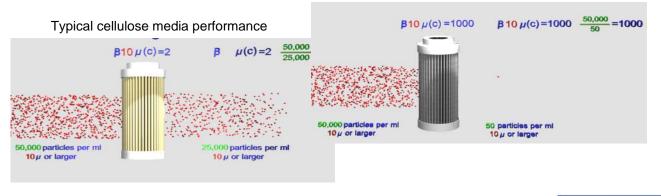
Feature	Description
	Achieve optimum temp faster. Reduce
Re-circulation line	flow rate for smaller systems. Maintain several systems with one VAC-U-DRY
Condensate	All water removed does not go through
collection	vacuum pump extends vac pump life.
	Low watt density heaters prevent coking
Heater system	No direct heat element contact with oil
	Heat applied only when necessary
Auto condensate	Automatic condensate drain standard
drain	Maximizes uptime (24/7 operation)
Electrical	Remote monitoring & start/stop (option)
phase reversal	PPM sensor Auto-start/stop (option)
standard	Visual display PPM water sensor

Field Trial Results

Tank Volume	100 Gallons (375 litres)			
Time Elapsed	95 Minutes			
VAC-U-DRY Model	V10 (10 gpm, 37 litres)			
Water content	Start:10,000 PPM (1.0%)Stop:50 PPM (0.005%)			
ISO Cleanliness code	Start: ISO 21/18/16 Stop ISO 15/11/4			

Estimated Water Removal Time - 5000 ppm (0.5%) to 150 ppm (0.015%)


FILTRATION


High Performance Particulate Filter Elements $\beta x[c] > 1000$

Dynamic Filter Efficiency (DFE) Testing - Revolutionary test methods assure that DFE rated elements perform true to rating even under demanding variable flow and vibration conditions. Today's industrial and mobile hydraulic circuits require elements that deliver specified cleanliness under ALL circumstances. Wire mesh supports the media to ensure against cyclical flow fatigue, temperature, and chemical resistance failures possible in filters with synthetic support mesh. Contact your distributor or Hy-Pro for more information and published articles on DFE testing.

Media Options - Through extensive testing we have developed media choices to handle any application. Media options include G7 Dualglass, and Stainless steel wire mesh.

Fluid Compatibility - Petroleum based fluids, water glycol, polyol ester, phosphate ester, High water based fluids, Skydrol and many other synthetics. Contact us for material selection assistance and compatibility questions.

Hy-Pro G7 Dualglass media performance

VAC-U-DRY PART NUMBER GUIDE

Image: status Image: s	V	flc ra		pun sea		power	dispers eleme		med	ia		seal	heater	0.0.0	con- dense		special options		
table 1flow rate codegeneral operation33 (11)55 (19)1010 (38)2020 (75)3030 (113)4545 (169)6060 (225)1010 KW2424242424242424242426900Dysesi1010 (38)1110 (10 KW)26901212 kW2728 (20 kW)2829 VAC, 3P, 50Hz11141 (415 VAC, 3P, 50Hz)1212 kW13380 VAC, 3P, 50Hz141415 VAC, 3P, 50Hz151526Filtration rating (v > 500 cS)15575 VAC, 3P, 60Hz27575 VAC, 3P, 60Hz28290 VAC, 3P, 50Hz1631 5tainles condensate wet parts (304 standard) (v > 500 cS)17100 (18 = 200)18100 (18 = 200)1992 ket (192 cond)10Mβ12g=1000 (18 = 200)10Mβ12g=1000 (18 = 200)10Mβ12g=1000 (18 = 200)25Mβ22g=1000 (18 = 200)	200		200	-	10	0		A			20		and a		Sil	24	n		
table 1flow rate codegeneral operation33 (11)55 (19)1010 (38)2020 (75)3030 (113)4545 (169)6060 (225)1010 KW2424242424242424242426900Dysesi1010 (38)1110 (10 KW)26901212 kW2728 (20 kW)2829 VAC, 3P, 50Hz11141 (415 VAC, 3P, 50Hz)1212 kW13380 VAC, 3P, 50Hz141415 VAC, 3P, 50Hz151526Filtration rating (v > 500 cS)15575 VAC, 3P, 60Hz27575 VAC, 3P, 60Hz28290 VAC, 3P, 50Hz1631 5tainles condensate wet parts (304 standard) 	9		1995	- 7	0	-	1000.0	70		Ī	able 6	S	eal	2	S YON SO	8.(P	201		
Line Line <thline< th=""> Line Line <th< td=""><td></td><td></td><th></th><td></td><td>100</td><td></td><td>Caral</td><td>W-A</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>inte a</td><td>1.40</td><td>Sec. 24</td><td></td></th<></thline<>					100		Caral	W-A						-	inte a	1.40	Sec. 24		
5 5 (19) 10 10 (38) 15 15 (56) 20 20 (75) 30 30 (113) 45 45 (169) 60 60 (225) 10 10 N seal 11 Liguid cooled 12 12 KW 24' 24 KW 26' 8 KW 11 10 N seal 11 Liquid ring 12 12 KW 23 230 VAC, 3P, 60Hz 11 Code power options 23 230 VAC, 3P, 60Hz 14 415 VAC, 3P, 50Hz 14 415 VAC, 3P, 60Hz 12 12 No (KS-VO) + International craing 14 415 VAC, 3P, 60Hz 14 15 VAC, 3P, 60Hz 12 10 (15 Senersia) 14 16 VAC, 3P, 60Hz 14 17 VAC, 3P, 60Hz 12 10 (16 Senersia) 14 16 VAC, 3P, 60Hz 14 16 Sene (Senersia)	cod	e gp r	n (Ipm)	S/nº	0 10	10		000	-		Viton (standard)		0		200	0 1	
1010 (38) (38)1515 (56) (20)2020 (75) (30)3030 (13) (45)4545 (169) (6)6060 (225)1able 2vacuum (24)1able 2vacuum (24)1able 2vacuum (24)1able 324)1able 3(add options to p/n in order they appear in table)1able 3(add options to p/n in order they appear in table)1able 3(add options to p/n in order they appear in table)1able 4dispersal (10 < 500 cSi)	3	3	3 (11)	<u> </u>		6.20	1 50	E F	19	-	Е	E	PR	21	27/3	10	C		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5		()	3.5	100	A a Con	10000	120	0		abla 7	R. a.	022400	n é	a Sun 6		1200	100	
15151516162020 (75)3030 (113)1010 NW3030 (113)1010 NW12 12 KW104545 (169)60 (225)10 KW24*24 KW1010DDry seal1010 A W24*24 KW1011Liquid ring1010 A W24*24 KW1010 A W11DDry seal1010 A W10 A W10 A W10 A W11Liquid ring1010 A W10 A W10 A W10 A W10 A W1212 KW1010 A W10 A W10 A W10 A W10 A W1212 KW10 A W10 A W10 A W10 A W10 A W10 A W1212 KW10 A W10 A W10 A W10 A W10 A W10 A W10 A W13380 VAC, 3P, 50Hz10 A Gispersal0 A Gispersal10 A Gis	2				100	~			10	50		heat	ter (KW)	10		6		100	
10 10	0			- 22	1	2.50	.0.0	4.	9.7	38	5			19	table 9	2040		1.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6		()	100	1	1000	2.10%	in 1	2	24				2		CO		621	
43 45 (19) 1 <td></td> <td></td> <th></th> <td>0</td> <td>10</td> <td>00</td> <td>to a</td> <td></td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>а</td> <td></td> <td>0</td>				0	10	00	to a		0	0				0		а		0	
do60 (223)table 2vacuum pumpDDry seal LLLiquid ringtable 3codepower options code23230 VAC, 3P, 60Hz23230 VAC, 3P, 60Hz38380 VAC, 3P, 60Hz46460 VAC, 3P, 50Hz46460 VAC, 3P, 50Hz46460 VAC, 3P, 60Hz57575 VAC, 3P, 60Hz57575 VAC, 3P, 60Hz67575 VAC, 3P, 60Hz7575 VAC, 3P, 60Hz7575 VAC, 3P, 60Hz9wacuum chamber foaming sensor1114 14 15 VAC, 3P, 60Hz12becked13830 VAC, 3P, 60Hz1414 5 VAC, 3P, 60Hz1414 5 VAC, 3P, 60Hz15code16element17backed18192(s) = 1000 (β1 = 200)11M10Mβ12(s) = 1000 (β1 = 200)1110M10Mβ12(s) = 1000 (β1 = 200)1110M125W25µ nominal wire mesh25W25µ nominal wire mesh25W25µ nominal wire mesh25W25µ nominal wire mesh24W74µ nominal wire mesh24W74µ nominal wire mesh24W149µ24W149µ25W25µ nominal wire mesh25W25µ n	14		` '	č	P. D.	-		69	1	-				S.		-		1	
Table 2vacuum codeDDry seal LLiquid ringTable 3CodeSpecial options23230 VAC, 3P, 60Hz123230 VAC, 3P, 60Hz124440 VAC, 3P, 60Hz125250 VAC, 3P, 60Hz146460 VAC, 3P, 60Hz171046460 VAC, 3P, 60Hz171071711100 (β1 = 200)3M95kg = 1000 (β1 = 200)3M95kg = 1000 (β1 = 200)110M110M110M25M25µ nominal wire mesh40W40µ nominal wire mesh40W40µ nominal wire mesh40W40µ nominal wire mesh40W149µ nominal wire mesh40W149µ nominal wire mesh	60		J (225)	200		la nord	Caster	No.		10				50				.0.0	
table 9special optionsDDry sealLiquid ringLLiquid ringTable 4dispersalcodepower optionsTable 4dispersal23230 VAC, 3P, 60Hz1 A^* Auto-condensate drain (supplied standard)38380 VAC, 3P, 50Hz1 A^* Auto-condensate drain (supplied standard)41415 VAC, 3P, 50Hz1 D dispersal0dispersal0dispersal014445 VAC, 3P, 60Hz1 P Packed57575 VAC, 3P, 60Hz1 P Packed57575 VAC, 3P, 60Hz11 P 14415 VAC, 3P, 60Hz1 P Packed1 P $Vacuum$ chamber foaming sensorG316 stainless condensate wet parts (304 standard165 $Vacuum$ chamber foaming sensor1 $B2.5_{[c]} = 1000$ ($B1 = 200$)1314 $B2.5_{[c]} = 1000$ ($B1 = 200$)1315 $B2.2_{[c]} = 1000$ ($B1 = 200$)1316 $B7.2_{[c]} = 1000$ ($B1 = 200$)1317 $B2.2_{[c]} = 1000$ ($B1 = 200$)1328 $B2.2_{[c]} = 1000$ ($B1 = 200$)1339 $B2.2_{[c]} = 1000$ ($B1 = 200$)1340 $B7.2_{[c]} = 1000$ ($B2 = 200$)1251 $B2.2_{[c]} = 1000$ ($B2.5 = 200$)2254 $B2.2_{[c]} = 1000$ ($B2.5 = 200$)2254 $B2.2_{[c]} = 1000$ ($B2.5 = 200$)2 <td< td=""><td>table</td><td>2 va</td><th>cuum</th><td>-</td><td>×n;</td><td>0 10</td><td>1</td><td>1</td><td>120</td><td>*</td><td>Possible</td><td>e hiah fu</td><td>Amp load (</td><td>L L</td><td>sider spec</td><td></td><td></td><td>01</td></td<>	table	2 va	cuum	-	×n;	0 10	1	1	120	*	Possible	e hiah fu	Amp load (L L	sider spec			01	
DDry seal LLiquid ringLLiquid ringtable 3 codepower options23230 VAC, 3P, 60Hz38380 VAC, 3P, 50Hz41415 VAC, 3P, 50Hz46460 VAC, 3P, 50Hz46460 VAC, 3P, 60Hz57575 VAC, 3P, 60Hz57575 VAC, 3P, 60Hz57575 To XAC, 3P, 60Hz9911M $\beta 2.5_{el} = 1000$ ($\beta 1 = 200$)3M $\beta 5_{el} = 1000$ ($\beta 1 = 200$)3M $\beta 5_{el} = 1000$ ($\beta 1 = 200$)10M $\beta 12_{el} = 1000$ ($\beta 1 = 200$)23K $\beta 22_{el} = 1000$ ($\beta 1 = 200$)3M $\beta 22_{el} = 1000$ ($\beta 1 = 200$)3M $\beta 22_{el} = 1000$ ($\beta 1 = 200$)3M $\beta 22_{el} = 1000$ ($\beta 1 = 200$)3M $\beta 12_{el} = 1000$ ($\beta 1 = 200$)10M $\beta 12_{el} = 1000$ ($\beta 1 = 200$)25W25µ nominal wire mesh40W40µ nominal wire mesh40W40µ nominal wire mesh40W40µ nominal wire mesh40W149µ nominal wire mesh74W74µ nominal wire mesh74W74µ nominal wire mesh74W149µ nominal wire mesh74W149µ nominal wire mesh					62	2 in t	1 30	1 0	20	2 50	- 21/ 4	onigiria		2.5	1 4	10 0		199	
LLiquid ringtable 3 codepower options23230 VAC, 3P, 60Hz38380 VAC, 3P, 50Hz41415 VAC, 3P, 50Hz46460 VAC, 3P, 60Hz57575 VAC, 3P, 60Hz57575 VAC, 3P, 60Hz67575 VAC, 3P, 60Hz7757 VAC, 3P, 60Hz7757 VAC, 3P, 60Hz9Packed ($\nu > 500 cSt$)9Packed ($\nu > 500 cSt$)11 $\beta 2.5_{[c]} = 1000$ ($\beta 1 = 200$)11M $\beta 2.5_{[c]} = 1000$ ($\beta 1 = 200$)11M $\beta 2.5_{[c]} = 1000$ ($\beta 1 = 200$)11M $\beta 2.5_{[c]} = 1000$ ($\beta 1 = 200$)11M $\beta 2.5_{[c]} = 1000$ ($\beta 1 = 200$)11M $\beta 2.5_{[c]} = 1000$ ($\beta 1 = 200$)11M $\beta 2.5_{[c]} = 1000$ ($\beta 1 = 200$)25W 2.5μ nominal wire mesh25W 2.5μ nominal wire mesh40W 40μ nominal wire mesh40W 40μ nominal wire mesh74W74\mu nominal wire mesh74W74µ nominal wire mesh74W74µ nominal wire mesh74W74µ nominal wire mesh74W74µ nominal wire mesh	3		-	2.0	a	- A	0	20	0			(a		-	-		opear in table	e)	
Itable 3 code23230 VAC, 3P, 60HzItable 4dispersal codeCCE mark (V5-V60) + International crating38380 VAC, 3P, 50HzItable 4dispersal codeDdirty filter indicator alarm light41415 VAC, 3P, 50HzItable 4dispersal (v < 500 cSt)		Liq	uid ring	00	in a	0	0 -00	00 10	6	-				•			-	,	
Bpre-filter Bag filter housingcodepower options23230 VAC, 3P, 60Hz38380 VAC, 3P, 50Hz41415 VAC, 3P, 50Hz46460 VAC, 3P, 60Hz57575 VAC, 3P, 60Hz57575 VAC, 3P, 60Hz57575 VAC, 3P, 60Hz6Filtration rating1M $\beta 2.5_{[c]} = 1000$ ($\beta 1 = 200$)3M $\beta 5_{[c]} = 1000$ ($\beta 1 = 200$)6M $\beta 7_{[c]} = 1000$ ($\beta 1 = 200$)6M $\beta 7_{[c]} = 1000$ ($\beta 1 = 200$)6M $\beta 7_{[c]} = 1000$ ($\beta 1 = 200$)10M $\beta 12_{[c]} = 1000$ ($\beta 1 = 200$)25W25µ nominal wire mesh40W40µ nominal wire mesh74W74µ nominal wire mesh74W74µ nominal wire mesh74W149µ nominal wire mesh	n	10 10	100	4	5	100	- A.	4-1	5	-9	A*		Auto-conder	sat	e drain (si	upplie	d standard)		
Lable 4dispersal codeDdirty filter indicator alarm light38380 VAC, 3P, 50Hz \Box \Box \Box \Box 41415 VAC, 3P, 50Hz \Box \Box \Box \Box 46460 VAC, 3P, 60Hz \Box \Box \Box \Box 57575 VAC, 3P, 60Hz \Box \Box \Box \Box 57575 VAC, 3P, 60Hz \Box \Box \Box \Box $A66$ 460 VAC, 3P, 60Hz \Box \Box \Box \Box $Table 5$ \Box \Box \Box \Box \Box $Code$ Filtration rating \Box \Box \Box \Box TM β 2.5[c] = 1000 (β 1 = 200) \Box \Box \Box $3M$ β 5[c] = 1000 (β 1 = 200) \Box \Box \Box $10M$ β 12[c] = 1000 (β 1 = 200) \Box \Box \Box $10M$ β 12[c] = 1000 (β 1 = 200) \Box \Box \Box $10M$ β 12[c] = 1000 (β 1 = 200) \Box \Box \Box $10M$ β 12[c] = 1000 (β 1 = 200) \Box \Box \Box $10M$ β 12[c] = 1000 (β 1 = 200) \Box \Box \Box $25M$ β 22[c] = 1000 (β 1 = 200) \Box \Box \Box $25W$ 25μ nominal wire mesh \Box \Box \Box $40W$ 40\mu nominal wire mesh \Box \Box \Box $40W$ 40\mu nominal wire mesh \Box \Box \Box $40W$ 40\mu nominal wire mesh \Box \Box \Box $40W$ 40μ nominal wire mesh \Box	table			0.1		(A) (A)	0.00	1.1	-	1	В		pre-	filte	r Bag filter	hous	ing		
Low Hole, BritLow Hole, Brit38380 VAC, 3P, 50Hz41415 VAC, 3P, 50Hz46460 VAC, 3P, 60Hz57575 VAC, 3P, 60Hz F Vacuum chamber foaming sensorG316 stainless condensate wet parts (304 standard ($v > 500$ cSt)PPacked ($v > 500$ cSt)PPacked ($v > 500$ cSt)JIndividual heater selector switches (24 KW and high for applications with limited amp circuit breakers for applications with limited amp circuit breakerstable 5 codeFiltration rating1M $\beta 2.5_{[e]} = 1000$ ($\beta 1 = 200$)3M $\beta 5_{[e]} = 1000$ ($\beta 1 = 200$)6M $\beta 7_{[e]} = 1000$ ($\beta 1 = 200$)10M $\beta 12_{[e]} = 1000$ ($\beta 1 = 200$)10M $\beta 12_{[e]} = 1000$ ($\beta 1 = 200$)25M $\beta 22_{[e]} = 1000$ ($\beta 1 = 200$)25M $\beta 22_{[e]} = 1000$ ($\beta 1 = 200$)25M $\beta 22_{[e]} = 1000$ ($\beta 1 = 200$)25W 25μ nominal wire mesh40W40 μ nominal wire mesh74W74 μ nominal wire mesh74W74 μ nominal wire mesh74W149 μ nominal wire mesh	cod	e l	oower	option	s	10 Dec. 0	N.O.M			0			CE mark (V	5~V	/60) + Inte	rnatio	nal crating		
38380 VAC, 9, 50Hz041415 VAC, 3P, 50Hz D dispersal ($\upsilon < 500 \text{ cSt}$)46460 VAC, 3P, 60Hz P Packed ($\upsilon < 500 \text{ cSt}$)57575 VAC, 3P, 60Hz P Packed ($\upsilon < 500 \text{ cSt}$)1 P Packed ($\upsilon < 500 \text{ cSt}$) F vacuum chamber forming sensor1 $B2.5_{[c]} = 1000$ ($\beta1 = 200$)3M $\beta5_{[c]} = 1000$ ($\beta1 = 200$)6M $\beta7_{[c]} = 1000$ ($\beta1 = 200$)6M $\beta7_{[c]} = 1000$ ($\beta1 = 200$)6M $\beta12_{[c]} = 1000$ ($\beta1 = 200$)10M $\beta12_{[c]} = 1000$ ($\beta1 = 200$)25M $\beta22_{[c]} = 1000$ ($\beta1 = 200$)25M $\beta22_{[c]} = 1000$ ($\beta1 = 200$)25W25µ nominal wire mesh40W40µ nominal wire mesh74W74µ nominal wire mesh74W74µ nominal wire mesh74W149µ nominal wire mesh74W149µ nominal wire mesh	23	23	30 VAC	, 3P, 60	Hz	table	4 dispe	rsal	E A								0		
41 415 VAC, $3P$, $50H2$ $U < 500$ cSt) 46 460 VAC, $3P$, $60H2$ P Packed 57 575 VAC, $3P$, $60H2$ P Packed 57 575 VAC, $3P$, $60H2$ P Packed $V > 500$ cSt) P P $V > 500$ cSt) H M M $B2.5_{[c]} = 1000$ ($\beta1 = 200$) $3M$ $\beta5_{[c]} = 1000$ ($\beta1 = 200$) $6M$ $\beta7_{[c]} = 1000$ ($\beta3 = 200$) $6M$ $\beta7_{[c]} = 1000$ ($\beta6 = 200$) $10M$ $\beta12_{[c]} = 1000$ ($\beta12 = 200$) $16M$ $\beta17_{[c]} = 1000$ ($\beta12 = 200$) $25M$ $\beta22_{[c]} = 1000$ ($\beta17 = 200$) $25W$ 25μ nominal wire mesh $40W$ 40μ nominal wire mesh $40W$ 40μ nominal wire mesh $74W$ 74μ nominal wire mesh $149W$ 149μ nominal wire mesh	38	38	BO VAC	, 3P, 50	Hz				00 19	20									
46460 VAC, 3P, 60HzPPacked ($\nu > 500 \text{ cSt}$)57575 VAC, 3P, 60HzPPacked ($\nu > 500 \text{ cSt}$)table 5individual heater selector switches (24 KW and high for applications with limited amp circuit breakers1M $\beta 2.5_{[c]} = 1000$ ($\beta 1 = 200$)3M $\beta 5_{[c]} = 1000$ ($\beta 3 = 200$)6M $\beta 7_{[c]} = 1000$ ($\beta 2 = 200$)6M $\beta 12_{[c]} = 1000$ ($\beta 1 = 200$)10M $\beta 12_{[c]} = 1000$ ($\beta 1 = 200$)25M $\beta 22_{[c]} = 1000$ ($\beta 1 = 200$)25M $\beta 22_{[c]} = 1000$ ($\beta 1 = 200$)25W 25μ nominal wire mesh40W 40μ nominal wire mesh74W74\mu nominal wire mesh149W149\mu nominal wire mesh	41	41	15 VAC	, 3P, 50	Hz	D				51-				•		rd)			
57575 VAC, 3P, 60Hzr($\upsilon > 500 \text{ cSt}$)H(in addition to standard non-reset hour meter)Itable 5codeFiltration rating1M $\beta 2.5_{[e]} = 1000 (\beta 1 = 200)$ 3M $\beta 5_{[e]} = 1000 (\beta 3 = 200)$ 6M $\beta 7_{[e]} = 1000 (\beta 6 = 200)$ 6M $\beta 7_{[e]} = 1000 (\beta 2 = 200)$ 10M $\beta 12_{[e]} = 1000 (\beta 1 = 200)$ 16M $\beta 17_{[e]} = 1000 (\beta 1 = 200)$ 25M $\beta 22_{[e]} = 1000 (\beta 1 = 200)$ 25M $\beta 22_{[e]} = 1000 (\beta 2 = 200)$ 25W25µ nominal wire mesh40W40µ nominal wire mesh74W74µ nominal wire mesh74W74µ nominal wire mesh149W149µ nominal wire mesh	46	46	50 VAC	, 3P, 60	Hz	P	,	,	03	-	0	510						-u)	
Image: table 5 codeFiltration ratingImage: for applications with limited amp circuit breakers1M $\beta 2.5_{[c]} = 1000 (\beta 1 = 200)$ Ksight flow indicator (wheel type)3M $\beta 5_{[c]} = 1000 (\beta 3 = 200)$ Llifting eye kit6M $\beta 7_{[c]} = 1000 (\beta 6 = 200)$ Pwater sensor + PLC control auto start/stop10M $\beta 12_{[c]} = 1000 (\beta 12 = 200)$ Q**maintenance spares and repair kit16M $\beta 17_{[c]} = 1000 (\beta 17 = 200)$ T*hose kit (suction & return hoses + wands)25M $\beta 22_{[c]} = 1000 (\beta 25 = 200)$ Uelectrical cord 50' without plug (13 meter)25W25µ nominal wire meshV*inlet control valve (for positive head inlet)40W40µ nominal wire meshWwater sensor and indicator74W74µ nominal wire meshXexplosion proof Class 1, Div 2, Group C/D with air projection for other explosion proof options.149W149µ nominal wire meshXexplosion proof class 1, Div 2, Group C/D with air projections.	57	5	75 VAC	, 3P, 60	Hz	P	(v > 50	0 cSt)	00.08	-0	Н	(
codeFiltration rating1M $\beta 2.5_{[c]} = 1000 \ (\beta 1 = 200)$ 3M $\beta 5_{[c]} = 1000 \ (\beta 3 = 200)$ $6M$ $\beta 7_{[c]} = 1000 \ (\beta 6 = 200)$ $6M$ $\beta 7_{[c]} = 1000 \ (\beta 6 = 200)$ $10M$ $\beta 12_{[c]} = 1000 \ (\beta 12 = 200)$ $16M$ $\beta 17_{[c]} = 1000 \ (\beta 12 = 200)$ $16M$ $\beta 17_{[c]} = 1000 \ (\beta 17 = 200)$ $25M$ $\beta 22_{[c]} = 1000 \ (\beta 25 = 200)$ $25M$ $\beta 22_{[c]} = 1000 \ (\beta 25 = 200)$ $25W$ 25μ nominal wire mesh $40W$ 40μ nominal wire mesh $40W$ 40μ nominal wire mesh $74W$ 74μ nominal wire mesh $149W$ 149μ nominal wire mesh	table	10		600	19.0	9.0°	0.200		Q,	19	J								
Image: 1M $\beta 2.5_{[c]} = 1000 \ (\beta 1 = 200)$ Image: LIfting eye kit3M $\beta 5_{[c]} = 1000 \ (\beta 3 = 200)$ Mdischarge line flow meter6M $\beta 7_{[c]} = 1000 \ (\beta 6 = 200)$ Pwater sensor + PLC control auto start/stop10M $\beta 12_{[c]} = 1000 \ (\beta 1 2 = 200)$ Q**maintenance spares and repair kit16M $\beta 17_{[c]} = 1000 \ (\beta 17 = 200)$ T*hose kit (suction & return hoses + wands)25M $\beta 22_{[c]} = 1000 \ (\beta 25 = 200)$ Uelectrical cord 50' without plug (13 meter)25W 25μ nominal wire meshV*inlet control valve (for positive head inlet)40W 40μ nominal wire meshWwater sensor and indicator74W74\mu nominal wire meshXexplosion proof Class 1, Div 2, Group C/D with air purple). Consult factory for other explosion proof options.	8			F	iltratio	on rating		11 1	-	24	К		sight fl	ow i	indicator (wheel	type)		
$3M$ $\beta 5_{[c]} = 1000 \ (\beta 3 = 200)$ M discharge line flow meter $6M$ $\beta 7_{[c]} = 1000 \ (\beta 6 = 200)$ P water sensor + PLC control auto start/stop $10M$ $\beta 12_{[c]} = 1000 \ (\beta 12 = 200)$ Q^{**} maintenance spares and repair kit $16M$ $\beta 17_{[c]} = 1000 \ (\beta 17 = 200)$ R^* electrical phase reversal switch (supplied standard $25M$ $\beta 22_{[c]} = 1000 \ (B25 = 200)$ U electrical cord 50' without plug (13 meter) $25W$ 25μ nominal wire mesh V^* inlet control valve (for positive head inlet) $40W$ 40μ nominal wire mesh W water sensor and indicator $74W$ 74μ nominal wire mesh X explosion proof Class 1, Div 2, Group C/D with air put (instrument quality air required). Consult factory for other explosion proof options.		1M				-)		\mathbb{O}	ø									
6M $\beta 7_{[c]} = 1000 \ (\beta 6 = 200)$ Q^{*+} water sensor + PLC control auto start/stop10M $\beta 12_{[c]} = 1000 \ (\beta 12 = 200)$ Q^{*+} maintenance spares and repair kit16M $\beta 17_{[c]} = 1000 \ (\beta 17 = 200)$ R^* electrical phase reversal switch (supplied standard25M $\beta 22_{[c]} = 1000 \ (B25 = 200)$ U electrical cord 50' without plug (13 meter)25W25µ nominal wire mesh V^* inlet control valve (for positive head inlet)40W40µ nominal wire mesh W water sensor and indicator74W74µ nominal wire mesh X explosion proof Class 1, Div 2, Group C/D with air pu (instrument quality air required). Consult factory for other explosion proof options.							4.71						-						
$10M$ $\beta 12_{[c]} = 1000$ ($\beta 12 = 200$) R^* electrical phase reversal switch (supplied standard T* $16M$ $\beta 17_{[c]} = 1000$ ($\beta 17 = 200$) R^* electrical phase reversal switch (supplied standard T* $25M$ $\beta 22_{[c]} = 1000$ ($B25 = 200$) U electrical cord 50' without plug (13 meter) $25W$ 25μ nominal wire mesh V^* inlet control valve (for positive head inlet) $40W$ 40μ nominal wire mesh W water sensor and indicator $74W$ 74μ nominal wire mesh X explosion proof Class 1, Div 2, Group C/D with air pu (instrument quality air required). Consult factory for other explosion proof options.		6M β7 _[c] = 100		07 1000 (00 000)				•											
16M $\beta 17_{[c]} = 1000 \ (\beta 17 = 200)$ T*In the electrical phase reversal switch (supplied standard25M $\beta 22_{[c]} = 1000 \ (B25 = 200)$ Uelectrical cord 50' without plug (13 meter)25W25µ nominal wire meshV*inlet control valve (for positive head inlet)40W40µ nominal wire meshWwater sensor and indicator74W74µ nominal wire meshXexplosion proof Class 1, Div 2, Group C/D with air pu (instrument quality air required). Consult factory for other explosion proof options.	1					M $\beta 12_{[c]} = 1000 \ (\beta 12 = 2$						\mathbf{C}'	100	-					rd)
$ \begin{array}{ c c c c } \hline 25M & \beta 22_{[c]} = 1000 \ (B25 = 200) \\ \hline 25W & 25\mu \ nominal wire mesh \\ \hline 40W & 40\mu \ nominal wire mesh \\ \hline 74W & 74\mu \ nominal wire mesh \\ \hline 149W & 149\mu \ nominal wire mesh \\ \hline \end{array} \\ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	6M					iu)												
25W 25μ nominal wire mesh 40W 40μ nominal wire mesh 74W 74μ nominal wire mesh 149W 149μ nominal wire mesh 149W 149μ nominal wire mesh 149W 149μ nominal wire mesh W explosion proof Class 1, Div 2, Group C/D with air put (instrument quality air required). Consult factory for other explosion proof options.	2	25M						00	20 1	-0				,					
W water sensor and indicator 40W 40μ nominal wire mesh 74W 74μ nominal wire mesh 149W 149μ nominal wire mesh	2	5W						10 13	65	10		inlet control valve (for positive head inlet)		,					
74W 74μ nominal wire mesh χ explosion proof Class 1, Div 2, Group C/D with air pu (instrument quality air required). Consult factory for other explosion proof options. 149W 149μ nominal wire mesh χ Consult factory for other explosion proof options.	4	-0W		•				in al	TRC.		W water sensor and in								
149W 149μ nominal wire mesh χ (instrument quality air required). Consult factory for other explosion proof options.	7						0						ourge						
		P				- 0		2				s.							
250W 250μ nominal wire mesh Y variable speed control (VFD drive)					N-A	57/31	Y variable speed control (VFD drive)		· ·										
Z* on-site start up training (1 x 10 hour shift)	120	10			3/0	-0 10	NE AM	7 57	20	~	Z*		on-site start	up	training (?	l x 10	hour shift)		

*recommended options (Auto-condensate drain & phase reversal standard)

⁺Q option repair & spares kit includes several items such as fuses, common relay, vac pump oil/exhaust filters, vac pump coupling, vac pump oil, panel bulb, vac chamber & condensate chamber covers, flow switch, heat thermocouple,

37

FC Filter Cart

Flow rate up to 22 gpm (82 lpm)

Ideal for hydraulic fluids (ISO VG22 ~ ISO VG68)

Filter new fluids during transfer and replenishment (top-off)

Flush fluids already in service with high efficiency elements in addition to existing filtration.

Remove particulate and water.

Condition bulk oil before use.

Materials of Construction

Assembly Frame: Painted Steel Tires: Rubber (foam filled, never flat) Filter Assembly: Aluminum head, Steel canister 25 psid bypass valve True differential pressure indicator Hoses: Reinforced synthetic Wands: Steel wands (zinc plated)

Operating Temperature

Nitrile (Buna) -40° F to 150° F -40° C to 66° C Fluorocarbon (Viton)* -15° F to 200° F

Fluorocarbon (Viton)* -15°F to 200°F -26°C to 93°C *High temperature / phosphate ester design

Fluid Compatibility

Petroleum and mineral based fluids (standard). For polyol ester, phosphate ester, and other specified synthetics use Viton seal option or contact factory.

Weight

FC1: 140 Lbs (63,6 kg) approximate FC2: 145 Lbs (66 kg) approximate FC3: 235 Lbs (106 kg) approximate

Explosion Proof Option

Class 1, Div 2 explosion option is available, or ask about our pneumatic powered cart.

Electrical Service

115VAC 60Hz 1P (standard) for FC1 & FC2 see options table for other selections

Electric Motor Specifications

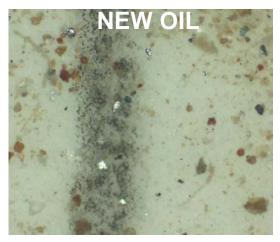
TEFC or ODP, 56C frame FC1: 1 HP, 1750 RPM, thermal overload reset FC2: 1 HP, 1750 RPM, thermal overload reset FC3*: 3 HP, 1750 RPM, thermal overload reset *230VAC 1P or 440VAC 3P required for FC3 **No cord reel for FC3, any 3 phase or > 230 VAC

Recommended Viscosity Range

FC1*: 28 SSU ~ 2000 SSU, 6 cSt ~ 400 cSt FC2*: 28 SSU ~ 1000 SSU, 6 cSt ~ 200 cSt FC3*: 28 SSU ~ 1000 SSU, 6 cSt ~ 200 cSt

*At maximum viscosity clean element pressure drop with 3M media code < 12 psid/0.85 bar. Check maximum viscosity of oil in coldest condition. For high viscosity lubricating oils consider the FCL series or call Hy-Pro.

Pump Specifications


Gear pump Internal relief full flow 100 psi, 6 bar standard

www.filterelement.com

FC1, FC2, FC3 FILTER CART APPLICATION INFO

Filtering New Oil - Particulate and Water

New oil is typically not clean oil, and not suitable for use in hydraulic and lube systems. During the production and transportation process new oil collects high levels of solid contaminant and water. A common ISO code for new oil is 24/22/19. New oil is one of the worst sources of particulate contaminant system ingression.

The FC with water removal element will effectively remove free water while capturing particulate with high efficiency. Free and dissolved water in hydraulic and lube systems leads to accelerated abrasive wear, corrosion of metal surfaces, increased electrical conductivity, viscosity variance, loss of lubricity, fluid additive breakdown, bearing fatigue and more. The FC series filter cart includes a wide range of element combination options to tackle any challenge. The HP75L8-25AB water removal element holds 23 ounces of water while controlling particles with a beta ratio of $\beta 25 = 200$, $\beta 22[c] = 1000$.

Flush and Condition Existing Systems

The FC is also effective for condition fluids that are already in service. Equipping hose ends and reservoirs with quick disconnect fittings allows you to use the FC as a portable side loop system that can service several machines.

FC1, FC2, FC3 FILTER CART APPLICATION INFO

Figure 1

Cleaner Fluid, Greater Reliability

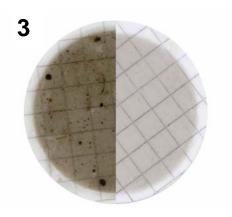
When establishing a target ISO cleanliness code first identify the most sensitive component. New oil added should be cleaner than the target ISO code for the system.

Figure 1 details the improvement in component life as the ISO cleanliness is improved for roller contact bearings. Improving and stabilizing fluid cleanliness codes can increase hydraulic component and bearing life exponentially.

Lab and field tests prove time and again that Hy-Pro filters deliver lower ISO cleanliness codes, and do it with greater consistency.

Current	Target	Target	Target	Target
ISO Code				
Start	2 x Life	3 x Life	4 x Life	5 x Life
28/26/23	25/22/19	22/20/17	20/18/15	19/17/14
27/25/22	23/21/18	21/19/16	19/17/14	18/16/13
26/24/21	22/20/17	20/18/15	19/17/14	17/15/12
25/23/20	21/19/16	19/17/14	17/15/12	16/14/11
25/22/19	20/18/15	18/16/13	16/14/11	15/13/10
23/21/18	19/17/14	17/15/12	15/13/10	14/12/9
22/20/17	18/16/13	16/14/11	15/13/10	13/11/8
21/19/16	17/15/12	15/13/10	13/11/8	-
20/18/15	16/14/11	14/12/9	-	-
19/17/14	15/13/10	13/11/8	-	-
18/16/13	14/12/9	-	-	-

Figure 2


U		
Current Condition	Pre-Filter	Main-Filter
ISO 25/24/22 (New oil)	HP75L8-25AB	HP75L8-3MB
with High water content	β22[c] = 1000 + water removal	β5[c] = 1000
ISO 25/24/22 (New oil)	HP75L8-12MB β12[c] = 1000	HP75L8-1MB β2.5[c] = 1000
ISO 21/19/16	HP75L8-3MB β5[c] = 1000	HP75L8-1MB β2.5[c] = 1000

The Right Element Combination

Figure 2 illustrates some possible combinations to use on the FC series cart. When water removal is desired use the 12A or 25A media code as a pre-filter. A finer media can be used on the main filter (second) to capture smaller particulate and reduce the ISO code. When conditioning a tote or flushing a fluid already in use the 1M media code will yield the quickest result on particulate.

Don't Put Dirty Oil Into Your System

Figure 3 shows the difference in particulate contamination between unfiltered new fluid with an ISO Cod of 24/22/19 and fluid that has been conditioned to an ISO Code of 16/14/11.

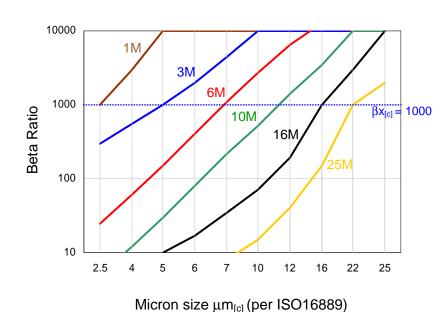
Prepared using PTK1 patch test kit

FILTER MEDIA ... THE HEART OF A FILTER

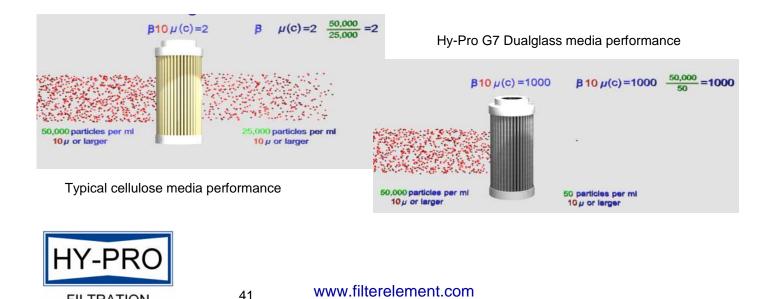
Dynamic Filter Efficiency (DFE) Testing

Revolutionary test methods assure that DFE rated elements perform true to rating even under demanding variable flow and vibration conditions. Today's industrial and mobile hydraulic circuits require elements that deliver specified cleanliness under ALL circumstances. Wire mesh supports the media to ensure against cyclical flow fatigue, temperature, and chemical resistance failures possible in filters with synthetic support mesh. Contact your distributor or Hy-Pro for more information and published articles on DFE testing.

Media Options

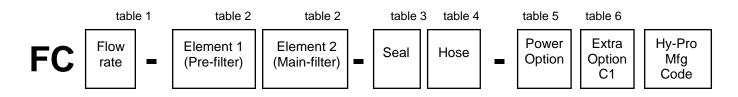

FILTRATION

Through extensive testing we have developed media choices to handle any application. Options include G7 Dualglass, G7 Dualglass + Water Removal and Stainless steel wire mesh.


Fluid Compatibility

Petroleum based fluids, water glycol, polyol ester, phosphate ester, High water based fluids, and many other synthetics. Contact us for seal material selection assistance.

FILTER MEDIA SPECIFICATIONS



media code	media description
A	G7 Dualglass high performance media combined with water removal scrim. $\beta x_{[c]} = 1000 (\beta x = 200)$
М	G7 Dualglass our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{[c]} = 1000 (\beta x = 200)$
W	Stainless steel wire mesh media $\beta x_{[c]} = 2 (\beta x = 2)$ nominally rated

Glass Media Code Filtration Efficiency (Beta Ratio) vs Micron Size (per ISO16889 multipass)

FC1, FC2, FC3 FILTER CART PART NUMBER GUIDE

REPLACEMENT FILTER ELEMENT PART NUMBER GUIDE

table 1	
code	flow rate gpm (lpm)
1	5 gpm (18,7 lpm) 2 x S75, single element heads (in series)
2	10 gpm (37,5 lpm) 2 x S75, single element heads (in series)
3	22 gpm (82 lpm) 2 x S75D, dual element heads (in series)

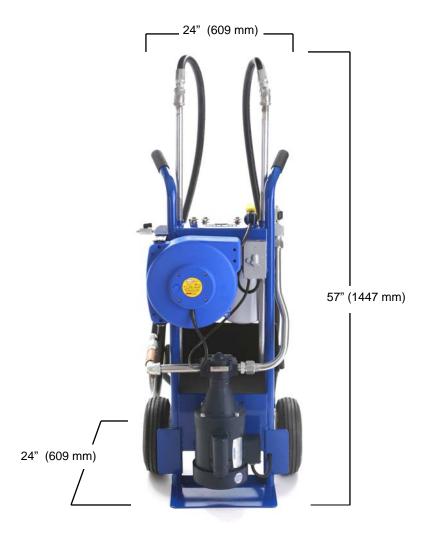
table 3	
code	seal material
В	Nitrile (Buna)
V	*Specified synthetics or High Temperature (>150F). Viton seals, metal wands, lined hoses.

*Phosphate Ester, Water Glycol & other synthetics.

table 4	hose
code	arrangement
W	Female 3/4" SAE/JIC swivel hose ends with steel wands
S	Female 3/4" SAE/JIC swivel hose ends (No Wands)
G	Female 3/4" BSPP swivel hose ends (No Wands)

*Extension hoses are available in 10' (254mm) lengths.

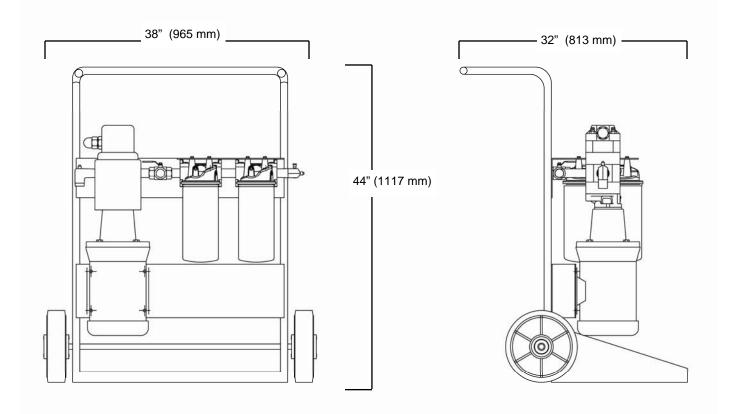
table 2		
code	filtration rating	media type
1M	$\beta 2.5_{[c]} = 1000 \ (\beta 1 = 200)$	G7 Dualglass
ЗM	$\beta 5_{[c]} = 1000 \ (\beta 3 = 200)$	G7 Dualglass
6M	$\beta 7_{[c]} = 1000 \ (\beta 6 = 200)$	G7 Dualglass
12A	$\beta 12_{[c]} = 1000 \ (\beta 12 = 200)$	G7 Dualglass + Water removal
12M	$\beta 12_{[c]} = 1000 \ (\beta 12 = 200)$	G7 Dualglass
25A	$\beta 22_{[c]} = 1000 \ (\beta 25 = 200)$	G7 Dualglass + Water removal
25M	$\beta 22_{[c]} = 1000 \ (\beta 25 = 200)$	G7 Dualglass
74W	74u nominal	wire mesh
149W	149u nominal	wire mesh


table 5 code	power options
*Omit (standard) *E1	115 VAC, 60Hz, 1P (1750 RPM motor) 120 VAC, 50Hz, 1P (1450 RPM motor)
E2 E3	230 VAC, 60Hz, 1P (1750 RPM motor) 230 VAC, 50Hz, 1P (1450 RPM motor)
E4	24 VDC (Consult factory for application)
E5	440-480 VAC, 60 Hz, 3P (1750 RPM motor)
E6	380-420 VAC, 50Hz, 3P (1450 RPM motor)

*Not available for FC3. 3 phase electrical option carts are supplied with terminated electrical cord only, and do not include electrical cord reel or electrical cord plug.

table 6	
code	special options
C1	Explosion proof electrical (Class 1, Div 2)
H1	Suction & return hose extensions (10', 2,5 meter)
H2	Suction & return hose extensions (20', 5 meter)

FC1, FC2 DIMENSIONS



FC1, FC2 SPARE PARTS

Part Number	Description
FCHOSE3/4SAE	3/4" SAE/JIC female swivel hose end, connects with Hy-Pro wands (sold individually)
FCHOSE3/4BSPP	3/4" BSPP female swivel hose end, Not compatible with wands (sold individually)
FCBATT	Removable drip pan
LFSV	Fluid sampling valve port
FCWANDST	Replacement wands steel
FCGRIPS	Cart handle grips (set of two)
FC1HPMTR	1 HP motor 115/230VAC 1P
FC1H1JIC	10 ft, 2,5 meter hose extension set JIC connections
FC1H1BSP	10 ft, 2,5 meter hose extension set BSP connections
FC1H2JIC	20 ft, 5 meter hose extension set JIC connections
FC1H2BSP	20 ft, 5 meter hose extension set BSP connections

FC3 DIMENSIONAL DRAWING

FC3 SPARE PARTS

Part Number	Description
FC3WANDST	Replacement wands steel
LFSV	Fluid sampling valve port
FC3H1JIC	10 ft, 2,5 meter hose extension set JIC connections
FC3H1BSP	10 ft, 2,5 meter hose extension set BSP connections
FC3H2JIC	20 ft, 5 meter hose extension set JIC connections
FC3H2BSP	20 ft, 5 meter hose extension set BSP connections

44

FCL Filter Cart

Flow rate up to 22 gpm (82 lpm)

Ideal for high viscosity Lubrication and hydraulic oils (ISOVG22 ~ ISOVG320)

Filter new fluids during transfer and replenishment (top-off)

Flush fluids already in service with high efficiency elements in addition to existing filtration (Reliability).

Remove particulate and water contaminant.

Condition bulk oil before use.

Large element yields extended life.

Materials of Construction

Assembly Frame: Painted Steel Wheels: Rubber (solid, non-shredding) Filter Assembly: Epoxy coated steel 25 or 50 psid bypass available True differential pressure indicator Hoses: Reinforced synthetic Wands: Steel

Operating Temperature

Nitrile (Buna) -40f to 150f -40c to 66c Fluorocarbon (Viton)* -15f to 200f -26c to 93c *High temperature / phosphate ester design

Fluid Compatibility

Petroleum and mineral based fluids (standard). For polyol ester, phosphate ester, and other specified synthetics use Viton seal option or contact factory.

Weight

FCL1: 350 Lbs (159 kg) approximate FCL2: 360Lbs (164 kg) approximate FCL3: 430 Lbs (195 kg) approximate

Electric Motor Specifications

TEFC 56C frame FCL1: 1 HP, 115VAC, 60Hz, 1P, 1750 RPM FCL2: 1 1/2 HP, 115VAC (FLA 16 Amps) 230VAC, 60Hz, 1P, 1750 RPM or 440VAC, 60Hz, 3P, 1750 RPM FCL3: 3HP, 230VAC, 60Hz, 1P, 1750 RPM or 440VAC, 60Hz, 3P, 1750 RPM

Recommended Viscosity Range*

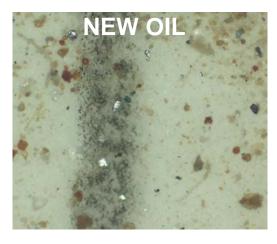
FCL1*: 28 SSU ~ 4000 SSU, 6 cSt ~ 800 cSt FCL2*: 28 SSU ~ 4000 SSU, 6 cSt ~ 800 cSt FCL3*: 28 SSU ~ 2000 SSU, 6 cSt ~ 400 cSt

*At maximum viscosity clean element pressure drop on 6M media code < 10 psid. Please check maximum viscosity of oil in coldest condition.

Pump Specifications

Gear pump Internal relief full flow @ 100 psi standard.

Explosion Proof Option


Class 1, Div 2 explosion option is available. Ask About our pneumatic powered carts.

FILTRATION

FCL1, FCL2, FCL3 FILTER CART APPLICATION INFO

Filtering New Oil - Particulate and Water

New oil is typically not clean oil, and might not be suitable for use in hydraulic and lube systems. During the production and transportation process new oil collects high levels of solid contaminant and water. A common ISO code for new oil is 24/22/19. New oil is one of the worst sources of particulate contaminant system ingression.

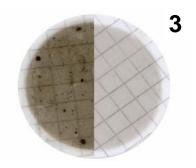
The FCL will effectively remove free water while capturing particulate with high efficiency. Free and dissolved water in hydraulic and lube systems leads to accelerated abrasive wear, corrosion of metal surfaces, increased electrical conductivity, viscosity variance, loss of lubricity, fluid additive breakdown, bearing fatigue, and more. The FCL series filter cart includes a wide range of element combination options to tackle any challenge. The "A" media adsorbs water while controlling particles with absolute efficiency (beta ratio of $\beta X = 200$, $\beta X_{cl} = 1000$).

Flush and Condition Existing Systems

The FCL is also effective for conditioning fluids that are already in service. Equipping hose ends and reservoirs with quick disconnect fittings allows you to use the FCL as a portable side loop system that can service several machines.

46

FCL1, FCL2, FCL3 FILTER CART APPLICATION INFO


Figure 1

Cleaner Fluid, Greater Reliability

When establishing a target ISO cleanliness code first identify the most sensitive component. New oil added should be cleaner than the target ISO code for the system.

Figure 1 details the improvements in component life as the ISO cleanliness is improved for roller contact bearings. Improving and stabilizing fluid cleanliness codes can increase hydraulic component and bearing life exponentially.

Lab and field tests prove time and again that Hy-Pro filters deliver lower ISO cleanliness codes, and do it with greater consistency.

Prepared using PTK1 patch test kit

Current Target Target Target Target ISO Code ISO Code ISO Code ISO Code ISO Code 2 x Life 3 x Life 4 x Life 5 x Life Start 28/26/23 25/22/19 22/20/17 20/18/15 19/17/14 27/25/22 23/21/18 21/19/16 19/17/14 18/16/13 22/20/17 19/17/14 17/15/12 26/24/21 20/18/15 25/23/20 21/19/16 19/17/14 17/15/12 16/14/11 25/22/19 20/18/15 18/16/13 16/14/11 15/13/10 23/21/18 19/17/14 17/15/12 15/13/10 14/12/9 22/20/17 18/16/13 16/14/11 15/13/10 13/11/8 21/19/16 17/15/12 15/13/10 13/11/8 -20/18/15 16/14/11 14/12/9 -_ 19/17/14 15/13/10 13/11/8 _ _ 18/16/13 14/12/9 ---

Don't Put Dirty Oil Into Your System

Figure 3 shows the difference in particulate contamination between unfiltered new fluid with an ISO Cod of 24/22/19 and fluid that has been conditioned to an ISO Code of 16/14/11.

Coreless Filter Element Technology

Hy-Pro coreless elements are featured in the FCL series (see figure 4). The elements are oversized to yield extended element life and handle a wide variety of high viscosity oils. Hy-Pro coreless elements utilize wire mesh pleat support which ensures that the pleats won't collapse or lose integrity.

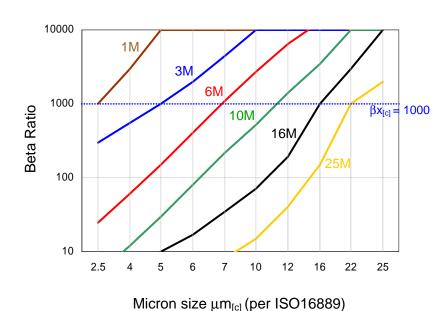
True Differential Pressure Gauges & Switches

Differential pressure gauges with green to red display ensures proper monitoring of filter element condition. DIN connector switch can be added to any pressure gauge (see figure 5).

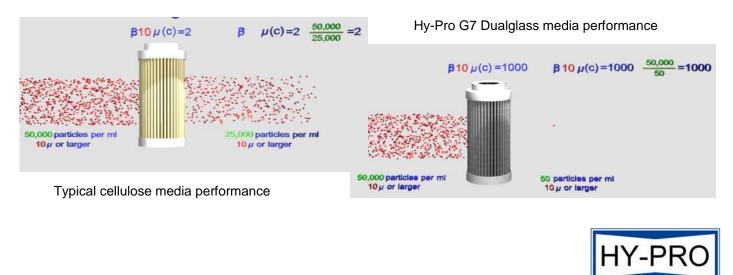
FILTER MEDIA ... THE HEART OF A FILTER

Dynamic Filter Efficiency (DFE) Testing

Revolutionary test methods assure that DFE rated elements perform true to rating even under demanding variable flow and vibration conditions. Today's industrial and mobile hydraulic circuits require elements that deliver specified cleanliness under ALL circumstances. Wire mesh supports the media to ensure against cyclical flow fatigue, temperature, and chemical resistance failures possible in filters with synthetic support mesh. Contact your distributor or Hy-Pro for more information and published articles on DFE testing.

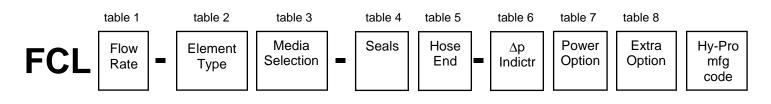

Media Options

Through extensive testing we have developed media choices to handle any application. Options include G7 Dualglass, G7 Dualglass + Water Removal and Stainless steel wire mesh.


Fluid Compatibility

Petroleum based fluids, water glycol, polyol ester, phosphate ester, High water based fluids, and many other synthetics. Contact us for seal material selection assistance.

FILTER MEDIA SPECIFICATIONS


media code	media description
A	G7 Dualglass high performance media combined with water removal scrim. $\beta x_{[c]} = 1000 (\beta x = 200)$
M	G7 Dualglass our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{[c]} = 1000 (\beta x = 200)$
W	Stainless steel wire mesh media $\beta x_{[c]} = 2 (\beta x = 2)$ nominally rated

Glass Media Code Filtration Efficiency (Beta Ratio) vs Micron Size (per ISO16889 multipass)

FILTRATION

FCL FILTER CART PART NUMBER GUIDE

REPLACEMENT FILTER ELEMENT PART NUMBER GUIDE

*Use L39 length code for HP8314 element series.

25A

25M 25W

40W

74W

149W

table 1		table 2		table 3		
code	flow rate gpm (lpm)	code	Element Configuration	code	filtration rating	media type
1	5 gpm (18,7 lpm)		HP105 coreless series, positive	1M	$\beta 2.5_{[c]} = 1000 \ (\beta 1 = 200)$	G7 Dualglass
2	10 gpm (37,5 lpm)	5	o-ring seals, NO BYPASS, max	3M	$\beta 5_{[c]} = 1000 \ (\beta 3 = 200)$	G7 Dualglass
3	22 gpm (82 lpm)		change-out 60 psid (4,2 bar)	6M	$\beta 7_{[c]} = 1000 \ (\beta 6 = 200)$	G7 Dualglass
	<u> </u>		HP106 element with bypass,	10A	β12[_{c]} = 1000 (β12 = 200)	Water removal +G
		6	25 psid (1,8 bar) bypass, orings	10M	$\beta 12_{[c]} = 1000 \ (\beta 12 = 200)$	G7 Dualglass
table 4			change-out 22 psid (1,5 bar)	16A	β16 _[c] = 1000 (β17 = 200)	Water removal +G
code	seal material		HP107 element with bypass	16M	$\beta 16_{[c]} = 1000 \ (\beta 17 = 200)$	G7 Dualglass

table 4 code	seal material
В	Nitrile (Buna)
V	Specified synthetics or High Temperature (>150F). Viton seals, metal wands, Teflon lined hoses.

HP105 coreless series, positive				
o-ring seals, NO BYPASS, max				
change-out 60 psid (4,2 bar)				
HP106 element with bypass,				
25 psid (1,8 bar) bypass, orings				
change-out 22 psid (1,5 bar)				
HP107 element with bypass				
50 psid (3,5 bar) bypass, orings				
change-out 45 psid (3,2 bar)				
USE HP8314 for element P/N				
Interchanges with Pall HC8314,				
NO BYPASS, oring seals, max				
change-out 45 psid (3,2 bar)				

table 7	
code	power options
*Omit (standard) *E1	115 VAC, 60Hz, 1P (1750 RPM motor) 120 VAC, 50Hz, 1P (1450 RPM motor)
E2 E3	230 VAC, 60Hz, 1P (1750 RPM motor) 230 VAC, 50Hz, 1P (1450 RPM motor)
E4	24 VDC (Consult factory for application)
E5	440-480 VAC, 60 Hz, 3P (1750 RPM motor)
E6	380-420 VAC, 50Hz, 3P (1450 RPM motor)

 $\beta 22_{[c]} = 1000 \ (\beta 25 = 200)$

 $\beta 22_{\text{[c]}} = 1000 \ (\beta 25 = 200)$

25u nominal

40u nominal

74u nominal

149u nominal

Water removal +G7 Dualglass

wire mesh

wire mesh

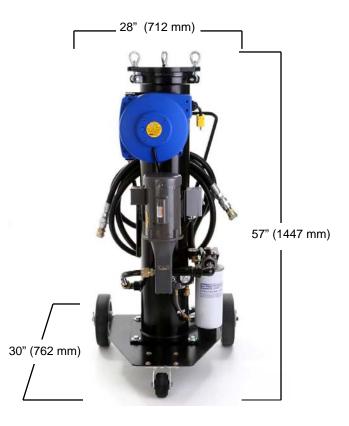
wire mesh

wire mesh

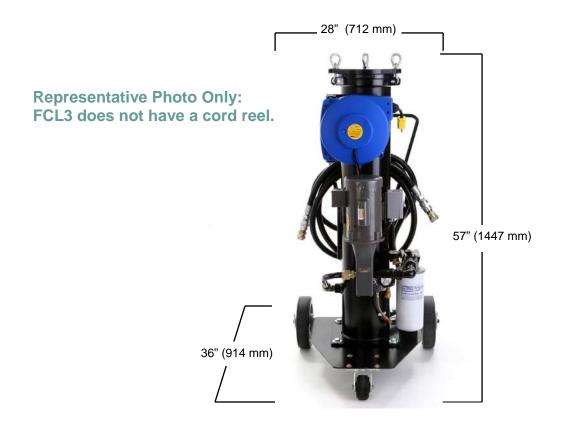
3 phase electrical option carts are supplied with terminated cord only, cord reel and plug not included. Customer may provide a plug.

*Not available for FCL3 series due to high amp load.

table 8 code	special options
18	L18 single length filter housing and element
C1	Explosion proof electrical (Class 1, Div 2)
H1	Suction & return hose extensions (10', 2,5 meter)
H2	Suction & return hose extensions (20', 5 meter)
K	149 μ wire mesh spin-on pump suction strainer
Р	On-board particle monitor (Hach PM4000-**)
Т	Large inflatable tires (off-road, severe duty)


table 5	
code	hose arrangement
W	Female SAE/JIC swivel hose end + wands
S	Female SAE/JIC swivel hose end, No wands
G	Female BSPP swivel hose end, No wands

*Extension hoses available 10' (254mm) lengths (see options)


table 6	
code	differential pressure indicator
Х	None (ported, plugged)
D	22 psid visual Δp gage, + electric alarm (120V AC)
E	22 psid visual ∆p gage
F	45 psid visual Δp gage, + electric alarm (120V AC)
G	45 psid visual ∆p gage
Н	65 psid visual ∆p gage, + electric alarm (120V AC, element options 5 & 8 only)
J	65 psid visual Δp gage (element options 5 & 8 only)
Р	Two pressure gages (industrial liquid filled)

FCL1, FCL2 DIMENSIONS

FCL3 DIMENSIONS

SPARE PARTS

Series	Part Number	Description		
FCL1, FCL2, FCL3	Element	Check FCL cart ID tag for element part number		
FCL1, FCL2, FCL3	FTHOSE1BSPP FTHOSE3BSPP	Hose with female swivel BSPP connection		
FCL1, FCL2, FCL3	FTHOSE1SAE FTHOSE3SAE	Hose with female swivel SAE/JIC connection		
FCL1, FCL2	FTHOSE1WD	Hose to accept steel wands (accepts wand FTWANDST)		
FCL1, FCL2	FTWANDST	Steel wand set, connects with hose FTHOSE1WD only		
FCL1	FT1HPMTR	Electric motor, 56C, TEFC or ODP, 1 HP, 115/230VAC, 1P		
FCL2	FCL2MTR	Electric motor, 56C, TEFC or ODP, 1.5HP 230VAC 1P		
FCL2	FCL2MTR3PH	Electric motor, 56C, TEFC or ODP, 1.5HP 440VAC 3P		
FCL3	FCL3MTR	Electric motor, 56C, TEFC or ODP, 3HP 230VAC 1P		
FCL3	FCL3MTR3PH	Electric motor, 56C, TEFC or ODP, 3HP 440VAC 3P		
FCL1, FCL2, FCL3	LFSV	Oil sampling isolation valve		
FCL1, FCL2, FCL3	SPLF107	HP106, HP107 Element hold down spring		
FCL1, FCL2, FCL3	LFHD105KIT	HP105, HP8314 Element hold down plate with snap ring		
FCL1, FCL2, FCL3	GLF	P option- liquid filled pressure gauge		
FCL1, FCL2, FCL3	LFIND-D	22 psid green to red visual differential pressure gauge + electric alarm		
FCL1, FCL2, FCL3	LFIND-E	22 psid green to red visual differential pressure gauge		
FCL1, FCL2, FCL3	LFIND-F	45 psid green to red visual differential pressure gauge + electric alarm		
FCL1, FCL2, FCL3	LFIND-G	45 psid green to red visual differential pressure gauge		
FCL1, FCL2, FCL3	LFIND-H	65 psid green to red visual differential pressure gauge + electric alarm		
FCL1, FCL2, FCL3	LFIND-J	65 psid green to red visual differential pressure gauge		
FCL1, FCL2, FCL3	OVLFLID	Filter housing seal VITON		
FCL1, FCL2, FCL3	LBLFLID	Filter housing seal BUNA		
FCL1, FCL2, FCL3	LFLID	Filter housing cover		
FCL1, FCL2, FCL3	LFLIDBLT	Filter housing cover bolts		
FCL1, FCL2, FCL3	LFLIDNUT	Filter housing cover eye nuts		
FCL1, FCL2, FCL3	LFDRPLUG	2" NPT filter housing drain plug		
FCL1, FCL2, FCL3	LFVPLUG	1/4" NPT filter housing cover vent port plug		
FCL1, FCL2	FC1H1JIC	10 ft, 2,5 meter hose extension set JIC connections		
FCL1, FCL2	FC1H1BSP	10 ft, 2,5 meter hose extension set BSP connections		
FCL1, FCL2	FC1H2JIC	20 ft, 5 meter hose extension set JIC connections		
FCL1, FCL2	FC1H2BSP	20 ft, 5 meter hose extension set BSP connections		
FCL3	FC3H1JIC	10 ft, 2,5 meter hose extension set JIC connections		
FCL3	FC3H1BSP	10 ft, 2,5 meter hose extension set BSP connections		
FCL3	FC3H2JIC	20 ft, 5 meter hose extension set JIC connections		
FCL3	FC3H2BSP	20 ft, 5 meter hose extension set BSP connections		

FSL Filter Unit Flow rate up to 22 gpm (82 lpm)

Dedicated filtration skids for gearbox and side-loop reservoir conditioning.

Ideal for high viscosity Lube and hydraulic oils (ISOVG22~ISOVG460)

Filter new fluids during transfer and replenishment (top-off)

Remove particulate and water contamination.

Large element yields extended life.

Materials of Construction

Assembly Frame: Painted Steel Drip Pan: Painted Steel Filter Assembly: Epoxy coated steel 25 or 50 psid bypass available True differential pressure indicator

Operating Temperature

Nitrile (Buna)

-40f to 150f -40c to 66c * -15f to 200f -26c to 93c

*High temperature / phosphate ester design

Fluid Compatibility

Petroleum and mineral based fluids (standard). For polyol ester, phosphate ester, and other specified synthetics use Viton seal option or contact factory.

Weight

FSL1 (36 length): 260 Lbs (117 kg) approximate FSL2 (36 length): 273 Lbs (124 kg) approximate FSL3 (36 length): 292 Lbs (133 kg) approximate

Explosion Proof Option

Class 1, Div 2, Group C/D explosion optional.

Electrical Service

115VAC 60Hz 1P standard (see options table for other selections)

Electric Motor Specifications

TEFC or ODP, 56C frame FSL1: 1 HP, 115VAC, 60Hz, 1P, 1750 RPM FSL2: 1 1/2 HP, 230VAC, 60Hz, 1P, 1750 RPM or 440VAC, 60Hz, 3P, 1750 RPM FSL3: 3HP, 230VAC, 60Hz, 1P, 1750 RPM or 440VAC, 60Hz, 3P, 1750 RPM

Recommended Viscosity Range*

FSL1*: 28 SSU ~ 6000 SSU, 6 cSt ~ 1200 cSt FSL2*: 28 SSU ~ 5000 SSU, 6 cSt ~ 1000 cSt FSL3*: 28 SSU ~ 3000 SSU, 6 cSt ~ 600 cSt

*Please check maximum viscosity of oil in coldest condition and normal operating condition for sizing and selection. Do not rely solely on ISO VG viscosity rating of the fluid.

Pump Specifications

Gear pump Internal relief full flow @ 100 psi standard.

FILTRATION

FSL1, FSL2, FSL3 FILTER CART APPLICATION INFO

Cleaner Fluid, Greater Reliability

When establishing a target ISO cleanliness code first identify the most sensitive component. New oil added should be cleaner than the target ISO code for the system.

Figure 1 details the improvements in component life as the ISO cleanliness is improved for roller contact bearings. Improving and stabilizing fluid cleanliness codes can increase hydraulic component and bearing life exponentially.

Lab and field tests prove time and again that Hy-Pro filters deliver lower ISO cleanliness codes, and do it with greater consistency.

Figure 1

Current ISO Code	Target ISO Code	Target ISO Code	Target ISO Code	Target ISO Code
Start	2 x Life	3 x Life	4 x Life	5 x Life
28/26/23	25/22/19	22/20/17	20/18/15	19/17/14
27/25/22	23/21/18	21/19/16	19/17/14	18/16/13
26/24/21	22/20/17	20/18/15	19/17/14	17/15/12
25/23/20	21/19/16	19/17/14	17/15/12	16/14/11
25/22/19	20/18/15	18/16/13	16/14/11	15/13/10
23/21/18	19/17/14	17/15/12	15/13/10	14/12/9
22/20/17	18/16/13	16/14/11	15/13/10	13/11/8
21/19/16	17/15/12	15/13/10	13/11/8	-
20/18/15	16/14/11	14/12/9	-	-
19/17/14	15/13/10	13/11/8	-	-
18/16/13	14/12/9	-	-	-

Coreless Filter Element Technology

Hy-Pro coreless elements are featured in the FSL series (see figure 4). The elements are oversized to yield extended element life and

handle a wide variety of high viscosity oils. Hy-Pro coreless elements utilize wire mesh pleat support which ensures that the pleats won't collapse or lose Integrity.

True Differential Pressure Gauges & Switches

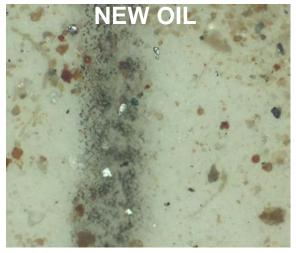
Differential pressure gauges with green to red display ensures proper monitoring of filter element condition. DIN connector switch can be added to any pressure gauge (see figure 5).

Cost of Contamination Control - The Tip of the Iceberg

Filtration as a visible cost is less than 3% of the total costs associated with contamination and contamination related failures. Poorly managed fluid contamination can result in the following costly situations:

- Lost production (downtime)
- Component repair, replacement
- Higher maintenance labor costs
- Unreliable machine performance
- Reduced fluid life
- Wasted time and energy

FSL1, FSL2, FSL3 FILTER CART APPLICATION INFO


fill suction mode.

Filtering New Oil - Remove Particulate and Water

New oil is typically not clean oil, and not suitable for use in hydraulic and lube systems. During the production and transportation process new oil collects high levels of solid contaminant and water. A common ISO code for new oil

is 24/22/19. New oil is one of the worst sources of particulate contaminant system ingression.

The FSL features a three-way valve on the inlet and may be used to draw new oil from a tote and pre-filter the new oil. Hy-Pro High efficiency media is your last line of defense against harmful particulate and water contamination. Free and dissolved water in hydraulic and lube systems leads to accelerated abrasive wear, corrosion of metal surfaces, increased electrical conductivity, viscosity variance, loss of lubricity, fluid additive breakdown, bearing fatigue, and more. The FSL features a wide range of options to tackle any challenge whether you are removing solid particles only or water and particles. The "A" media adsorbs water while controlling particles with absolute efficiency (beta ratio of $\beta X_{[c]} > 1000$).

Gear pump (with relief)

FSL FILTRATION UNIT SELECTION AND SIZING GUIDELINES

Effective filter sizing requires consideration of flow rate, viscosity (operating and cold start), fluid type, degree of filtration. When properly sized bypass during cold start can be avoided/minimized and optimum element efficiency and life achieved. The filter assembly differential pressure values provided for sizing differ for each media code, and assume 150 SSU (32Cts) viscosity and 0.86 fluid specific gravity. Use the following steps to identify the correct high pressure filter assembly.

1. Calculate ∆p coefficient at both operating and cold start viscosity:

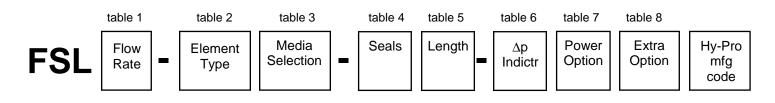
_		Actual Operating Viscosity (SSU)		Actual S.G.
∆p Coefficient	=		Х	
		150		0.86

2. Calculate actual clean filter assembly Δp at both operating and cold start viscosity:

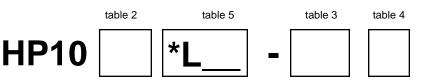
Actual assembly clean Δp = Flow rate x Δp Coefficient x Assembly Δp factor (from sizing table)

3. Sizing Recommendations to optimize performance and permit future flexibility:

- To avoid or minimize bypass during cold start the actual assembly clean ∆p calculation should be repeated for start-up conditions if cold starts are frequent.
- Actual assembly clean ∆p should not exceed 5 psid at normal operating viscosity.
- If suitable assembly size is approaching the upper limit of the recommended flow rate at the desired degree of filtration consider increasing the assembly to the next larger size if a finer degree of filtration might be preferred in the future. This practice allows the future flexibility to enhance fluid cleanliness without compromising clean △p or filter element life.
- Once a suitable filter assembly size is determined consider increasing the assembly to the next larger size to optimize filter element life and avoid bypass during cold start.
- When using water glycol or other specified synthetics we recommend increasing the filter assembly by 1~2 sizes.
- High viscosity fluid (ie gear lube ISO 220) will typically display very high viscosity as the temperature drops below 100f. For such applications avoiding bypass during start-up might not be possible.


Media code	Length code	∆p factor* (psid/gpm)	∆p factor* (bar/lpm)	Length code	∆p factor* (psid/gpm)	∆p factor* (bar/lpm)
1M		0.059	0.00113		0.047	0.0009
3M		0.05	0.00096		0.042	0.00081
6M	16,18	0.048	0.00092	36,39	0.041	0.00079
10M		0.046	0.00087		0.04	0.00077
16M		0.043	0.00082		0.038	0.00073
25M		0.04	0.00077		0.037	0.00071
**W		0.037	0.00071		0.035	0.00067

FSL Filter Assembly (housing + element) Differential Pressure Factors



55

FSL FILTER CART PART NUMBER GUIDE

REPLACEMENT FILTER ELEMENT PART NUMBER GUIDE

*Use L16 or L39 length code for HP8314 single and double element lengths.

table 1	table 1		
code	flow rate gpm (lpm)		cod
1	5 gpm (18,7 lpm)		
2	10 gpm (37,5 lpm)		Ę
3	22 gpm (82 lpm)		

table 4		
code	seal material	
В	Nitrile (Buna)	
V	Specified synthetics or High Temperature (>150F). Viton seals	

le 2	
de	Element Configuration
	HP105 coreless series, positive
5	o-ring seals, NO BYPASS, max
	change-out 60 psid (4,2 bar)
	HP106 element with bypass,
6	25 psid (1,8 bar) bypass, orings
	change-out 22 psid (1,5 bar)
	HP107 element with bypass
7	50 psid (3,5 bar) bypass, orings
	change-out 45 psid (3,2 bar)
	USE HP8314 for element P/N
8	Interchanges with Pall HC8314,
	NO BYPASS, oring seals, max
	change-out 45 psid (3,2 bar)

table 3				
code	filtration rating	media type		
1M	$\beta 2.5_{[c]} = 1000 \ (\beta 1 = 200)$	G7 Dualglass		
3M	$\beta 5_{[c]} = 1000 \ (\beta 3 = 200)$	G7 Dualglass		
6M	$\beta 7_{[c]} = 1000 \ (\beta 6 = 200)$	G7 Dualglass		
10A	$\beta 12[c] = 1000 \ (\beta 12 = 200)$	Water removal		
10M	$\beta 12_{[c]} = 1000 \ (\beta 12 = 200)$	G7 Dualglass		
16A	$\beta 16_{[c]} = 1000 \ (\beta 17 = 200)$	Water removal		
16M	$\beta 16_{[c]} = 1000 \ (\beta 17 = 200)$	G7 Dualglass		
25A	$\beta 22_{[c]} = 1000 \ (\beta 25 = 200)$	Water removal G7		
25M	$\beta 22_{[c]} = 1000 \ (\beta 25 = 200)$	Dualglass		
25W	25u nominal	wire mesh		
40W	40u nominal	wire mesh		
74W	74u nominal	wire mesh		
149W	149u nominal	wire mesh		

table 5	
code	element length
18	Single - 18" nominal (FSL1, FSL2 only)
36	Double - 36" nominal (FSL1, FSL2, FSL3)

table 6	ble 6			
code	code differential pressure indicator			
Х	None (ported, plugged)			
D	22 psid visual Δp gage, + electric alarm (120V AC)			
E	22 psid visual ∆p gage			
F	45 psid visual ∆p gage, + electric alarm (120V AC)			
G	45 psid visual ∆p gage			
н	65 psid visual ∆p gage, + electric alarm (120V AC, non-bypass element options 5 & 8 only)			
J	65 psid visual ∆p gage (non-bypass element options 5 & 8 only)			
Р	Two pressure gages (industrial liquid filled)			

table 7			
code	power options		
Omit (standard) E1	115 VAC, 60Hz, 1P (1750 RPM motor) 120 VAC, 50Hz, 1P (1450 RPM motor)		
E2 E3	230 VAC, 60Hz, 1P (1750 RPM motor) 230 VAC, 50Hz, 1P (1450 RPM motor)		
E4	24 VDC (Consult factory for application)		
E5	440-480 VAC, 60 Hz, 3P (1750 RPM motor)		
E6	380-420 VAC, 50Hz, 3P (1450 RPM motor)		

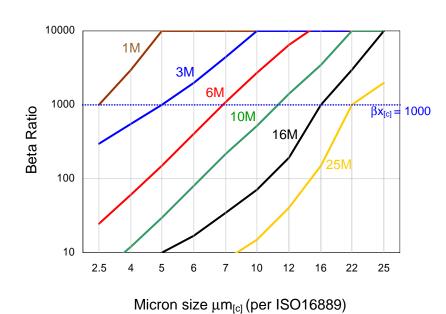
*3 phase electrical option carts are supplied with terminated electrical cord only. Customer may provide a plug to be installed by Hy-Pro.

table 8 code	special options
C1	Explosion proof electrical (Class 1,Div 2, Grp C/D)
Р	On-board particle monitor (call factory for info)
S	Stainless steel vessel, plumbing, element support
Т	Drip Tray with for spill retention

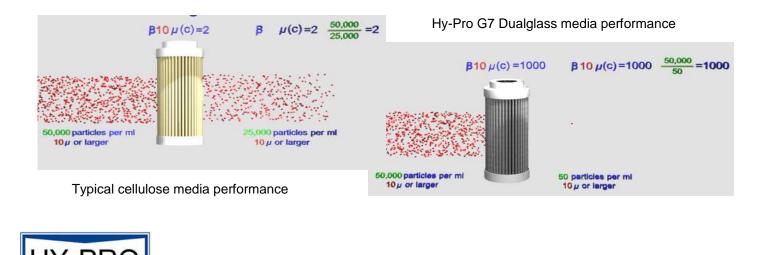
Dynamic Filter Efficiency (DFE) Testing

Revolutionary test methods assure that DFE rated elements perform true to rating even under demanding variable flow and vibration conditions. Today's industrial and mobile hydraulic circuits require elements that deliver specified cleanliness under ALL circumstances. Wire mesh supports the media to ensure against cyclical flow fatigue, temperature, and chemical resistance failures possible in filters with synthetic support mesh. Contact your distributor or Hy-Pro for more information and published articles on DFE testing.

Media Options

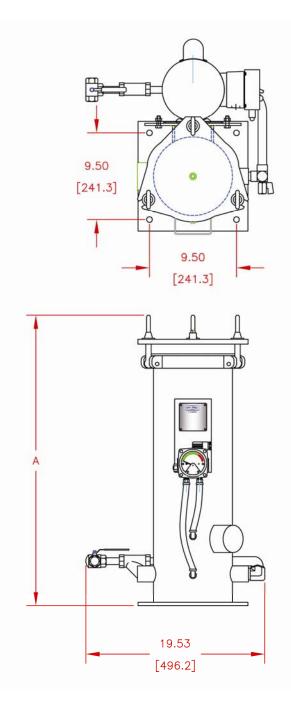

Through extensive testing we have developed media choices to handle any application. Options include G7 Dualglass, G7 Dualglass + Water Removal and Stainless steel wire mesh.

Fluid Compatibility

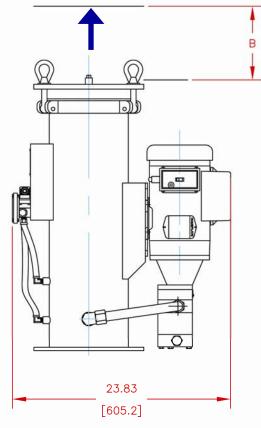

Petroleum based fluids, water glycol, polyol ester, phosphate ester, High water based fluids, and many other synthetics. Contact us for seal material selection assistance.

FILTER MEDIA SPECIFICATIONS

Glass Media Code Filtration Efficiency (Beta Ratio) vs Micron Size (per ISO16889 multipass)



media code	media description
A	G7 Dualglass high performance media combined with water removal scrim. $\beta x_{[c]} = 1000 (\beta x = 200)$
Μ	G7 Dualglass our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{[c]} = 1000 (\beta x = 200)$
W	Stainless steel wire mesh media $\beta x_{[c]} = 2 \ (\beta x = 2)$ nominally rated


FILTRATION

FSL1, FSL2 DIMENSIONS

Dims IN (mm)			
	L18 L36		
A	31.81 (808)	49.81 (1265)	
В	17.25 (438)	36.25 (921)	

Element removal clearance

58

SPARE PARTS

Series	Part Number	Description	
FSL1, FSL2, FSL3	LFSV	Oil sampling isolation valve	
FSL1, FSL2, FSL3	SPLF107	HP106, HP107 Element hold down spring	
FSL1, FSL2, FSL3	LFHD105KIT	HP105, HP8314 Element hold down plate with snap ring	
FSL1, FSL2, FSL3	GLF	P option- liquid filled pressure gauge	
FSL1, FSL2, FSL3	LFIND-D	22 psid green to red visual differential pressure gauge + electric alarm	
FSL1, FSL2, FSL3	LFIND-E	22 psid green to red visual differential pressure gauge	
FSL1, FSL2, FSL3	LFIND-F	45 psid green to red visual differential pressure gauge + electric alarm	
FSL1, FSL2, FSL3	LFIND-G	45 psid green to red visual differential pressure gauge	
FSL1, FSL2, FSL3	LFIND-H	65 psid green to red visual differential pressure gauge + electric alarm	
FSL1, FSL2, FSL3	LFIND-J	65 psid green to red visual differential pressure gauge	
FSL1, FSL2, FSL3	OVLFLID	Filter housing seal VITON	
FSL1, FSL2, FSL3	LBLFLID	Filter housing seal BUNA	
FSL1, FSL2, FSL3	LFLID	Filter housing cover	
FSL1, FSL2, FSL3	LFLIDBLT	Filter housing cover bolts	
FSL1, FSL2, FSL3	LFLIDNUT	Filter housing cover eye nuts	
FCL1, FCL2, FCL3	LFDRPLUG	2" NPT filter housing drain plug	
FSL1, FSL2, FSL3	LFVPLUG	1/4" NPT filter housing cover vent port plug	

59

FPL Spin-On Filter Panel

Flow rate up to 11 gpm (41 lpm), Max operating pressure 150 psi, 10 bar

Ideal for hydraulic fluids (ISO VG22 ~ ISO VG68)

Filter new fluids during replenishment (top-off)

Enhance existing filtration (high efficiency elements.)

Remove particle and water contaminant.

Materials of Construction

Assembly Frame: Painted Steel Filter Assembly: Aluminum head, Steel canister 25 psid bypass valve True differential pressure indicator

Operating Temperature

Nitrile (Buna)

-40°F to 150°F -40°C to 66°C

Fluorocarbon (Viton)* -15°F to 200°F -26°C to 93°C *High temperature / phosphate ester design

Fluid Compatibility

Petroleum and mineral based fluids (standard). For polyol ester, phosphate ester, and other specified synthetics use Viton seal option or contact factory.

Weight

FPL1: 110 Lbs (49.90 kg) approximate FPL2: 120 Lbs (54.43 kg) approximate

Explosion Proof Option

Class 1, Div 2, Group C/D explosion optional.

Electrical Service

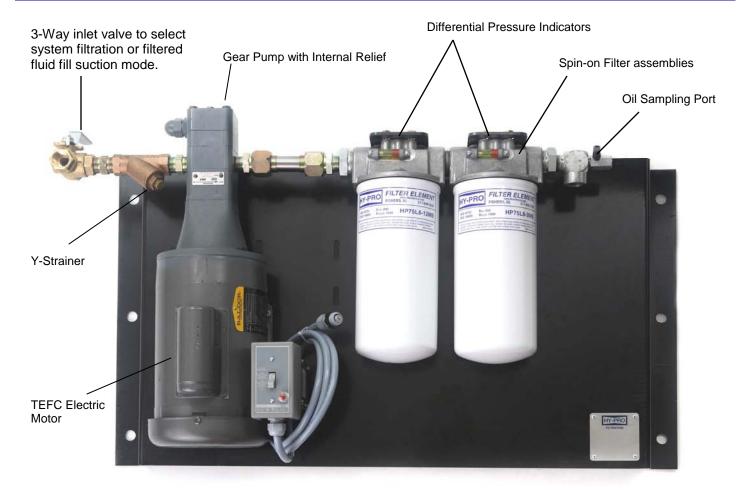
115VAC 60Hz 1P (standard) see options table for other selections

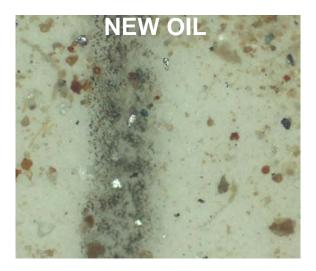
Electric Motor Specifications

TEFC or ODP, 56C frame FC1: 1 HP, 1750 RPM, thermal overload reset FC2: 1 HP, 1750 RPM, thermal overload reset

Recommended Viscosity Range

FC1*: 28 SSU ~ 2000 SSU, 6 cSt ~ 400 cSt FC2*: 28 SSU ~ 1000 SSU, 6 cSt ~ 200 cSt


*At maximum viscosity clean element pressure drop with 3M media code < 12 psid/0.85 bar. Check maximum viscosity of oil in coldest condition. For high viscosity lubricating oils consider the FCL series or call Hy-Pro.


Pump Specifications

Gear pump Internal relief full flow 100 psi, 6 bar standard

FPL1, FPL2 FILTER PANEL APPLICATION INFO

Filtering New Oil - Particulate and Water

New oil is typically not clean oil, and not suitable for use in hydraulic and lube systems. During the production and transportation process new oil collects high levels of solid contaminant and water. A common ISO code for new oil is 24/22/19. New oil is one of the worst sources of particulate contaminant system ingression.

The FPL will effectively remove free water while capturing particulate with high efficiency. Free and dissolved water in hydraulic and lube systems leads to accelerated abrasive wear, corrosion of metal surfaces, increased electrical conductivity, viscosity variance, loss of lubricity, fluid additive breakdown, bearing fatigue, and more. The FPL series filter panel includes a wide range of element combination options to tackle any challenge. The HP75L8-25AB water removal element holds 23 ounces of water while controlling particles with a beta ratio of $\beta_{25} = 200$, $\beta_{22}[c] = 1000$.

Flush and Condition Existing Systems

The FPL is also effective for conditioning fluids that are already in service. Hy-Pro high efficiency elements can be used to enhance the filtration existing on the system without affecting system performance due to higher element differential pressures.

FPL1, FPL2 FILTER PANEL APPLICATION INFO

Figure 1

Cleaner Fluid, Greater Reliability

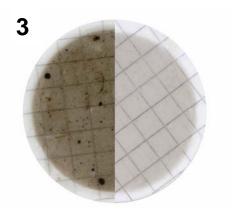
When establishing a target ISO cleanliness code first identify the most sensitive component. New oil added should be cleaner than the target ISO code for the system.

Figure 1 details the improvement in component life as the ISO cleanliness is improved for roller contact bearings. Improving and stabilizing fluid cleanliness codes can increase hydraulic component and bearing life exponentially.

Lab and field tests prove time and time again that Hy-Pro filters deliver lower ISO cleanliness codes, and do it with greater consistency.

Current ISO Code	Target ISO Code	Target ISO Code	Target ISO Code	Target ISO Code
Start	2 x Life	3 x Life	4 x Life	5 x Life
28/26/23	25/22/19	22/20/17	20/18/15	19/17/14
27/25/22	23/21/18	21/19/16	19/17/14	18/16/13
26/24/21	22/20/17	20/18/15	19/17/14	17/15/12
25/23/20	21/19/16	19/17/14	17/15/12	16/14/11
25/22/19	20/18/15	18/16/13	16/14/11	15/13/10
23/21/18	19/17/14	17/15/12	15/13/10	14/12/9
22/20/17	18/16/13	16/14/11	15/13/10	13/11/8
21/19/16	17/15/12	15/13/10	13/11/8	-
20/18/15	16/14/11	14/12/9	-	-
19/17/14	15/13/10	13/11/8	-	-
18/16/13	14/12/9	-	-	-

Figure 2


0		
Current Condition	Pre-Filter	Main-Filter
ISO 25/24/22 (New oil)	HP75L8-25AB	HP75L8-3MB
with High water content	β22[c] = 1000 + water removal	β5[c] = 1000
ISO 25/24/22 (New oil)	HP75L8-12MB β12[c] = 1000	HP75L8-1MB β2.5[c] = 1000
ISO 21/19/16	HP75L8-3MB β5[c] = 1000	HP75L8-1MB β2.5[c] = 1000

The Right Element Combination

Figure 2 illustrates some possible combinations to use on the FPL series panel. When water removal is desired use the 12A or 25A media code as a pre-filter. A finer media can be used on the second filter to capture smaller particulate and reduce the ISO code. When conditioning a tote or flushing a fluid already in use the 1M media code will yield the quickest result on particulate.

Don't Put Dirty Oil Into Your System

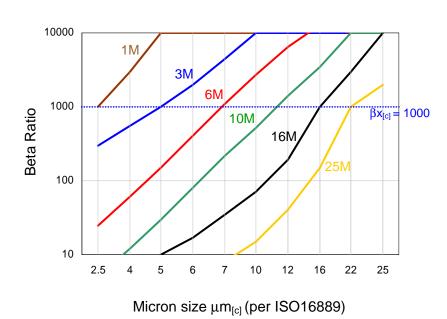
Figure 3 shows the difference in particulate contamination between unfiltered new fluid with an ISO Code of 24/22/19 and fluid that has been conditioned to an ISO Code of 16/14/11.

Prepared using PTK1 patch test kit

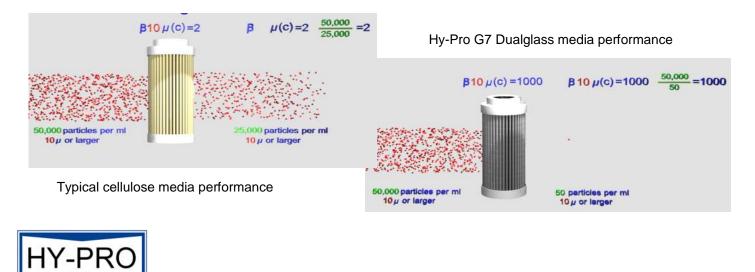
FILTER MEDIA ... THE HEART OF A FILTER

Dynamic Filter Efficiency (DFE) Testing

Revolutionary test methods assure that DFE rated elements perform true to rating even under demanding variable flow and vibration conditions. Today's industrial and mobile hydraulic circuits require elements that deliver specified cleanliness under ALL circumstances. Wire mesh supports the media to ensure against cyclical flow fatigue, temperature, and chemical resistance failures possible in filters with synthetic support mesh. Contact your distributor or Hy-Pro for more information and published articles on DFE testing.

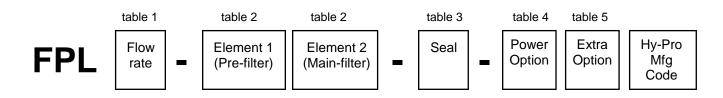

Media Options

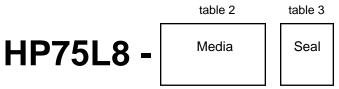
Through extensive testing we have developed media choices to handle any application. Options include G7 Dualglass, G7 Dualglass + Water Removal and Stainless steel wire mesh.


Fluid Compatibility

Petroleum based fluids, water glycol, polyol ester, phosphate ester, high water based fluids, and many other synthetics. Contact us for seal material selection assistance.

FILTER MEDIA SPECIFICATIONS


media code	media description
A	G7 Dualglass high performance media combined with water removal scrim. $\beta x_{[c]} = 1000 (\beta x = 200)$
М	G7 Dualglass our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{[c]} = 1000 (\beta x = 200)$
W	Stainless steel wire mesh media $\beta x_{[c]} = 2 \ (\beta x = 2)$ nominally rated


Glass Media Code Filtration Efficiency (Beta Ratio) vs Micron Size (per ISO16889 multipass)

FILTRATION

FPL1, FPL2 FILTER PANEL PART NUMBER GUIDE

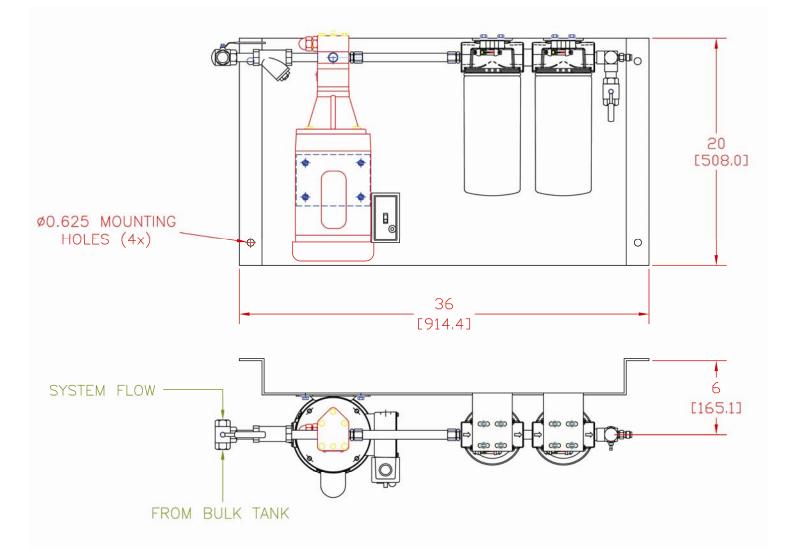
REPLACEMENT FILTER ELEMENT PART NUMBER GUIDE

table 1	
code	flow rate gpm (lpm)
1	5 gpm (18,7 lpm) 2 x S75, single element heads (in series)
2	10 gpm (37,5 lpm) 2 x S75, single element heads (in series)

table 3	
code	seal material
В	Nitrile (Buna)
V	*Specified synthetics or High Temperature (>150F). Viton seals

table 2		
code	filtration rating	media type
1M	$\beta 2.5_{[c]} = 1000 \ (\beta 1 = 200)$	G7 Dualglass
3M	$\beta 5_{[c]} = 1000 \ (\beta 3 = 200)$	G7 Dualglass
6M	$\beta 7_{[c]} = 1000 \ (\beta 6 = 200)$	G7 Dualglass
12A	$\beta 12_{[c]} = 1000 \ (\beta 12 = 200)$	G7 Dualglass + Water removal
12M	$\beta 12_{[c]} = 1000 \ (\beta 12 = 200)$	G7 Dualglass
25A	$\beta 22_{[c]} = 1000 \ (\beta 25 = 200)$	G7 Dualglass + Water removal
25M	$\beta 22_{[c]} = 1000 \ (\beta 25 = 200)$	G7 Dualglass
74W	74u nominal	wire mesh
149W	149u nominal	wire mesh

*Phosphate Ester, Water Glycol & other synthetics.


table 4 code	power options
Omit (standard)	115 VAC, 60Hz, 1P (1750 RPM motor)
E1	120 VAC, 50Hz, 1P (1450 RPM motor)
E2	230 VAC, 60Hz, 1P (1750 RPM motor)
E3	230 VAC, 50Hz, 1P (1450 RPM motor)
E4	24 VDC (Consult factory for application)
E5	440-480 VAC, 60 Hz, 3P (1750 RPM motor)
E6	380-420 VAC, 50Hz, 3P (1450 RPM motor)

*3 phase electrical option carts are supplied with terminated electrical cord only, and do not include electrical cord reel or electrical cord plug.

table 5	
code	special options
C1	Explosion proof electrical (Class 1, Div 2, Grp C/D)

FPL1, FPL2 DIMENSIONS

TF4 In-Tank Filter Assembly

Featuring Hy-Pro G7 Dualglass high performance DFE rated filter element technology

APPLICATIONS

- Hy-Pro Low pressure TF4 series filters are ideal for installation on the return line to remove contaminant ingested or generated by the system.
- Power units
- Mobile equipment
- Compact alternative to spin-on filters (In-tank mount)

FEATURES, BENEFITS, ADVANTAGES

DFE rated elements	G7 Dualglass elements are DFE
	rated to assure performance even
	when exposed to the toughest
	conditions that hydraulic systems
	can generate (See DFE for details).
Low housing	Unique internal flow paths provide
pressure drop	low resistance to flow.
	(Low pressure drop)
Wire mesh media	Ensures media integrity during
support	dynamic flow. Don't sacrifice
	performance with plastic mesh.
Coreless element	Reduce disposal costs and reduce
(4C element only)	Environmental impact. Incinerates
	at 1100°F and weighs less.
Tank mounted	Most of the assembly is inside tank.
	Compact alternative to spin-ons
Single or Dual inlet	Available with one inlet port or two
ports	Inlet ports with 180° orientation
	Maximize flexibility of installation
Top loading	Minimal mess and oil loss. Clean
	and easy to service.
Universal mounting	Accommodates North American and
pattern	European mounting patterns.
Removable bowl	Dispose of all contaminated fluid
	and clean bowl during service.
Twist open bolt cover	
	loosening cover bolts during service.
	No lost bolts.

PRODUCT SPECIFICATIONS

Operating Pressure	100 psi (6.85 bar) maximum
Maximum Flow rate	75 gpm, 281 lpm
Design safety factor	2.5:1
Element collapse	150 psid (10 bar)
Assembly material	Head: Cast aluminum (impregnated)
	Bowl: Conductive synthetic
Fluid compatibility	Compatible with petroleum
(ISO 2948)	based oils, specified water based,
	oil/water emulsion, and specified
	synthetic fluids with Flurocarbon
	or EPR seals (call for compatibility)
Bypass setting	25 psid (1.77 bar) standard
Weight (w/element)	With element 3.4 Lbs, 1.53 kg
Temperature rating	Buna: -40°F (-40°C) to 225°F (107°C)
	Viton: -15°F (-26°C) to 275°F (135°C)

Viton is a registered trademark of DuPont

TF4 FILTER ASSEMBLY SELECTION AND SIZING GUIDELINES

Effective filter sizing requires consideration of flow rate, viscosity (operating and cold start), fluid type and degree of filtration. When properly sized, bypass during cold start can be avoided/minimized and optimum element efficiency and life achieved. The filter assembly differential pressure values provided for sizing differ for each media code, and assume 150 SSU (32cSt) viscosity and 0.86 fluid specific gravity. Use the following steps to identify the correct high pressure filter assembly.

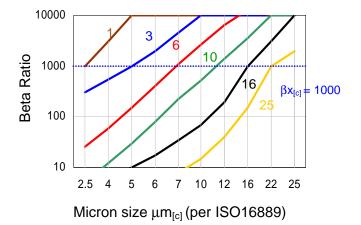
1. Calculate ∆p coefficient at both operating and cold start viscosity:

		Actual Operating Viscosity (SSU)		Actual S.G.
∆p Coefficient	=		Х	
		150		0.86

2. Calculate actual clean filter assembly Δp at both operating and cold start viscosity:

Actual assembly clean Δp = Flow rate x Δp Coefficient x Assembly Δp factor (from sizing table)

3. Sizing Recommendations to optimize performance and permit future flexibility:


- To avoid or minimize bypass during cold start the actual assembly clean ∆p calculation should be repeated for start-up conditions if cold starts are frequent.
- Actual assembly clean Δp should not exceed 5 psid at normal operating viscosity.
- If suitable assembly size is approaching the upper limit of the recommended flow rate at the desired degree of filtration consider increasing the assembly to the next larger size if a finer degree of filtration might be preferred in the future. This practice allows the future flexibility to enhance fluid cleanliness without compromising clean Δp or filter element life.
- Once a suitable filter assembly size is determined consider increasing the assembly to the next larger size to optimize filter element life and avoid bypass during cold start.
- When using water glycol or other specified synthetics we recommend increasing the filter assembly by 1~2 sizes.
- High viscosity fluid (ie gear lube ISO 220) will typically display very high viscosity as the temperature drops below 100°F.
 For such applications avoiding bypass during start-up might not be possible.

Media code	Element code	Max flow gpm (lpm)	Port size	∆p factor* (psid/gpm)	∆p factor* (bar/lpm)
3M		30 (112)		0.285	0.0055
6M		42 (157)		0.189	0.0036
10M	4C, K	50 (187)	1 1/4" (B4, S4, N4)	0.147	0.0028
16M		55 (206)		0.115	0.0023
25M	1	65 (243)		0.098	0.0018
**W		75 (281)		0.011	0.0002

TF4** Assembly Differential Pressure Factors

media code	media description
A	G7 Dualglass high performance media combined with water removal scrim. $\beta x_{[c]} = 1000 (\beta x = 200)$
М	G7 Dualglass our latest generation of DFE rated, high performance glass media for hydraulic & lubrication fluids. $\beta x_{[c]} = 1000 (\beta x = 200)$
W	Stainless steel wire mesh media $\beta x_{[c]} = 2 \ (\beta x = 2)$ nominally rated

67

TF4 ASSEMBLY PART NUMBER GUIDE

BOLD text denotes standard options that are available for quick shipment. Non-standard options are subject to longer lead times.

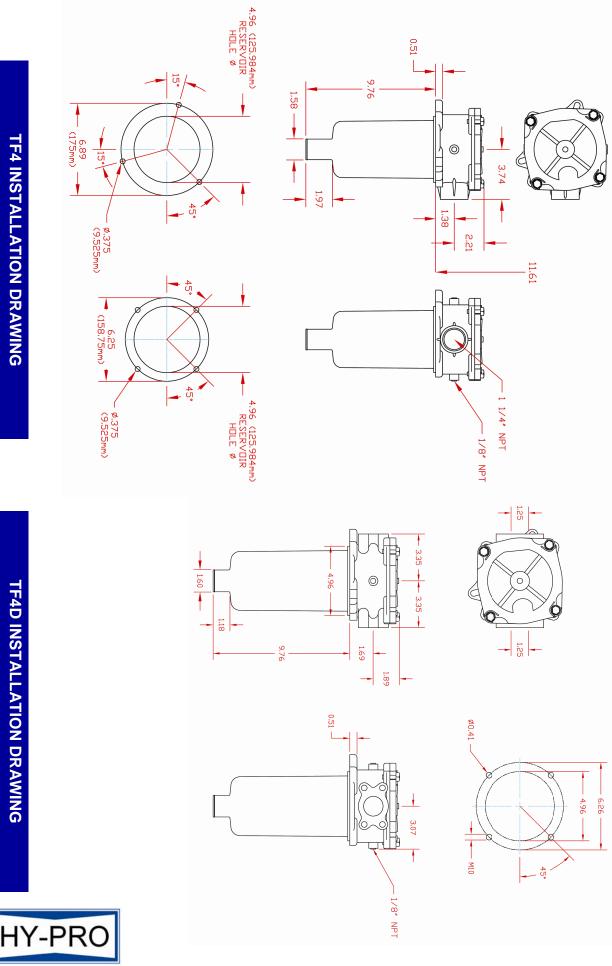
table 1	
code	port configuration
Omit	Single inlet port
D	Double inlet port 180° orientation

table 4	
code	seal material
В	Buna-Nitrile
v	Viton-Fluorocarbon

filtration rating	media type
β2.5[c] = 1000 (β1 = 200)	G7 Dualglass
β5[c] = 1000 (β3 = 200)	G7 Dualglass
$\beta7[c] = 1000 \ (\beta6 = 200)$	G7 Dualglass
$\beta 12[c] = 1000 \ (\beta 12 = 200)$	Water removal
$\beta 12[c] = 1000 \ (\beta 12 = 200)$	G7 Dualglass
$\beta 16[c] = 1000 \ (\beta 17 = 200)$	Water removal
$\beta 16[c] = 1000 \ (\beta 17 = 200)$	G7 Dualglass
β22[c] = 1000 (β25 = 200)	Water removal
$\beta 22[c] = 1000 \ (\beta 25 = 200)$	G7 Dualglass
25u nominal	wire mesh
40u nominal	wire mesh
74u nominal	wire mesh
149u nominal	wire mesh
	$\beta 2.5[c] = 1000 (\beta 1 = 200)$ $\beta 5[c] = 1000 (\beta 3 = 200)$ $\beta 7[c] = 1000 (\beta 6 = 200)$ $\beta 12[c] = 1000 (\beta 12 = 200)$ $\beta 12[c] = 1000 (\beta 12 = 200)$ $\beta 16[c] = 1000 (\beta 17 = 200)$ $\beta 16[c] = 1000 (\beta 17 = 200)$ $\beta 22[c] = 1000 (\beta 25 = 200)$ $\beta 22[c] = 1000 (\beta 25 = 200)$ 25u nominal 40u nominal 74u nominal

table 3	
code	porting options
B4	BSPT 1 1/4"
S4	SAE-20, 1 1/4"
N4	NPT 1 1/4"

table 5	
code	pressure indicator
М	Visual Pressure Gage
E D	3-wire Electrical Pressure Switch DIN Electrical Pressure Switch
х	No indicator (Pressure ports plugged)


table 6	
code	special options
H4	HPK series element instead of HP4C coreless. HPK conforms to AIAG HF4 automotive standard. For element part number replace 4C with K

Hy-Pro filters are tested to the latest industry standard ISO16889 (replacing ISO4572) resulting in a new scale for defining particle sizes and determining filtration ratio (formerly known as beta ratio)

New (ISO16889) vs Old (ISO4572) size comparison

βx(c)=1000 (ISO16889)	2.5	5	7	12	22
βx=200 (ISO4572)	<1	3	6	12	25

FILTRATION

TFR In-Tank Filter Assemblies

Featuring Hy-Pro G7 Dualglass high performance DFE rated filter element technology

APPLICATIONS

- Hy-Pro Low pressure TFR series filters are ideal for installation on the return line to remove contaminant ingested or generated by the system.
- Power units
- Mobile equipment
- Compact alternative to spin-on filters

FEATURES, BEN	IEFITS, ADVANTAGES
DFE rated elements	G7 Dualglass elements are DFE rated to assure performance even when exposed to the toughest conditions that hydraulic systems can generate (See DFE for details).
Low housing pressure drop	Unique internal flow paths provide low resistance to flow. (Low pressure drop)
Inside~out flow	Dirty oil is trapped during element service. Avoid cross contamination common with outside~in flow filters.
Tank mounted	Most of the assembly is inside tank. Compact alternative to spin-ons
Integral element bypass valve	Valve is part of the element. New valve with every element. No risk of bypass valve spring fatigue failure.
Top loading	Minimize mess and oil loss. Clean and easy to service.
Universal mounting pattern	Accommodates North American and European mounting patterns
Optional fill port	Fill port option enables QD fluid fill without opening the housing
Twist open bolt cover	Keyways on cover require only loosening cover bolts during service. No lost bolts.

PRODUCT SPECIFICATIONS

Operating Pressure	150 psi, 10 bar max
Flow rate by series	TFR1 (L code 11) 35 gpm, 131 lpm
	TFR2 (L code 18) 120 gpm, 140 lpm
	TFR3 (L code 34) 200 gpm, 750 lpm
Design safety factor	2.5:1
Element collapse	100 psid (7 bar)
Assembly material	Head: Cast aluminum (impregnated)
	Diffuser: Plated steel
Fluid compatibility	Compatible with petroleum,
(ISO 2948)	based oils, specified water based,
	oil/water emulsion, and specified
	synthetic fluids with Flurocarbon
	or EPR seals (call for compatibility)
Bypass setting	25 psid (1.77 bar) standard
	see reverse for other options
Weight (w/element)	TFR1-6" 3.4 Lbs, 1.53 kg
	TFR1-8" 3.6 Lbs, 1.62 kg
	TFR1-11" 4.0 Lbs, 1.80 kg
	TFR2-8" 10.0 Lbs, 4.50 kg
	TFR2-11" 10.5 Lbs, 4.64 kg
	TFR2-18" 12.0 Lbs, 5.40 kg
	TFR3-15" 20.0 Lbs, 9.00 kg
	TFR3-19" 26.5 Lbs, 11.93 kg
	TFR3-34" 38.0 Lbs, 17.10 kg
Temperature rating	Buna: -40°F (-40°C) to 225°F (107°C)
	Viton: -15°F (-26°C) to 275°F (135°C)

FILTRATION

TFR FILTER ASSEMBLY SELECTION AND SIZING GUIDELINES

Effective filter sizing requires consideration of flow rate, viscosity (operating and cold start), fluid type and degree of filtration. When properly sized, bypass during cold start can be avoided/minimized and optimum element efficiency and life achieved. The filter assembly differential pressure values provided for sizing differ for each media code, and assume 150 SSU (32Cts) viscosity and 0.86 fluid specific gravity. Use the following steps to identify the correct high pressure filter assembly.

1. Calculate Δp coefficient at both operating and cold start viscosity:

		Actual Operating Viscosity (SSU)		Actual S.G.
∆p Coefficient	=		Х	
		150		0.86

2. Calculate actual clean filter assembly Δp at both operating and cold start viscosity:

Actual assembly clean Δp = Flow rate x Δp Coefficient x Assembly Δp factor (from sizing table)

3. Sizing Recommendations to optimize performance and permit future flexibility:

- To avoid or minimize bypass during cold start the actual assembly clean ∆p calculation should be repeated for start-up conditions if cold starts are frequent.
- Actual assembly clean ∆p should not exceed 5 psid at normal operating viscosity.
- If suitable assembly size is approaching the upper limit of the recommended flow rate at the desired degree of filtration consider increasing the assembly to the next larger size if a finer degree of filtration might be preferred in the future. This practice allows the future flexibility to enhance fluid cleanliness without compromising clean △p or filter element life.
- Once a suitable filter assembly size is determined consider increasing the assembly to the next larger size to optimize filter element life and avoid bypass during cold start.
- When using water glycol or other specified synthetics we recommend increasing the filter assembly by 1~2 sizes.
- High viscosity fluid (ie gear lube ISO 220) will typically display very high viscosity as the temperature drops below 100f. For such applications avoiding bypass during start-up might not be possible.

Media code	Length code	Max flow gpm (lpm)	Port size	∆p factor* (psid/gpm)	∆p factor* (bar/lpm)
3M		10 (37)		0.717	0.0138
6M		14 (52)		0.597	0.0115
10M	L6	19 (71)	1" (B3, S3, N3)	0.420	0.0081
16M		23 (86)		0.285	0.0055
25M		27 (101)		0.198	0.0078
**W		36 (131)		0.065	0.0013
3M		13 (49)		0.514	0.0099
6M		18 (67)		0.420	0.0079
10M	L8	23 (86)	1" (B3, S3, N3)	0.337	0.0065
16M		28 (105)		0.242	0.0047
25M		33 (124)		0.169	0.0032
**W		42 (157)		0.052	0.001
3M		21 (79)		0.326	0.0064
6M		28 (105)		0.261	0.0049
10M	L11	33 (124)	1 1/4" (B4, S4)	0.223	0.0042
16M]	42 (157)	1	0.181	0.0035
25M		48 (180)	1	0.134	0.0025
**W		57 (214)]	0.039	0.0008

TFR1** Assembly Differential Pressure Factors

Media code	Length code	Max flow gpm (Ipm)	Port size	∆p factor* (psid/gpm)	∆p factor* (bar/lpm)
ЗM		30 (112)		0.200	0.0038
6M		51 (190)		0.143	0.0028
10M	L8	63 (236)	1 1/2" (B5, S5, N5)	0.102	0.0020
16M		82 (307)		0.087	0.0017
25M		94 (352)		0.067	0.0013
**W		105 (393)		0.047	0.0009
3M		38 (142)		0.152	0.0030
6M		63 (236)		0.109	0.0021
10M	L11	78 (292)	1 1/2" (B5, S5, N5)	0.083	0.0016
16M		105 (394)		0.070	0.0013
25M		130 (490)		0.052	0.0010
**W		150 (562)		0.037	0.0007
ЗM		70 (262)		0.103	0.0020
6M		110 (412)]	0.074	0.0014
10M	L18	150 (562)	1 1/2" (B5, S5, N5)	0.052	0.0010
16M		165 (618)	1	0.039	0.0008
25M		175 (656)	1	0.029	0.0006
**W		255 (956)	1	0.019	0.0004

TFR2** Assembly Differential Pressure Factors

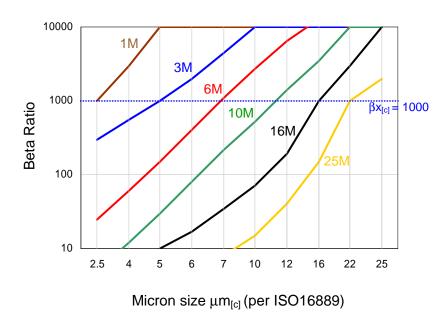
TFR3** Assembly Differential Pressure Factors

Media code	Length code	Max flow gpm (Ipm)	Port size	∆p factor* (psid/gpm)	∆p factor* (bar/lpm)
3M		82 (307)		0.093	0.0018
6M		118 (442)	-	0.066	0.0013
10M	L15	165 (618)	2 1/2" Flange	0.047	0.0009
16M		200 (750)	SAE Code 61	0.042	0.0008
25M		236 (885)		0.033	0.0006
**W		285 (1068)		0.020	0.0004
3M		105 (393)		0.072	0.0014
6M		150 (562)		0.051	0.0010
10M	L19	175 (656)	2 1/2" Flange	0.042	0.0008
16M		215 (806)	SAE Code 61	0.035	0.0007
25M		235 (881)		0.026	0.0005
**W		335 (1256)		0.018	0.0003
3M		168 (630)		0.044	0.0008
6M		240 (900)		0.031	0.0006
10M	L34	280 (1050)	2 1/2" Flange	0.025	0.0005
16M		344 (1290)	SAE Code 61	0.021	0.0004
25M		376 (1410)	1	0.016	0.0003
**W		536 (2010)		0.011	0.0002

FILTER MEDIA ... THE HEART OF A FILTER

Dynamic Filter Efficiency (DFE) Testing

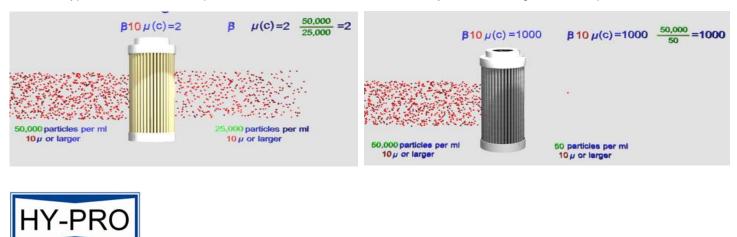
Revolutionary test methods assure that DFE rated elements perform true to rating even under demanding variable flow and vibration conditions. Today's industrial and mobile hydraulic circuits require elements that deliver specified cleanliness under ALL circumstances. Wire mesh supports the media to ensure against cyclical flow fatigue, temperature, and chemical resistance failures possible in filters with synthetic support mesh. Contact your distributor or Hy-Pro for more information and published articles on DFE testing.


Media Options

Through extensive testing we have developed media choices to handle any application. Options include G7 Dualglass, G7 Dualglass + Water Removal and Stainless steel wire mesh.

Fluid Compatibility

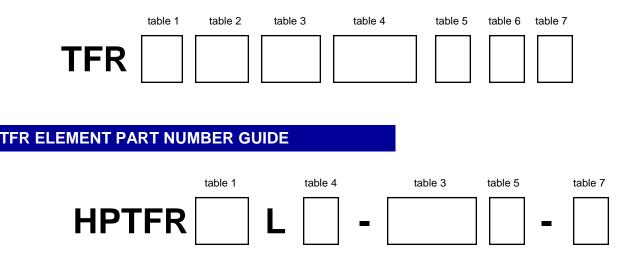
Petroleum based fluids, water glycol, polyol ester, phosphate ester, high water based fluids, and many other synthetics. Contact us for seal material selection assistance.


FILTER MEDIA SPECIFICATIONS

Glass Media Code Filtration Efficiency (Beta Ratio) vs Micron Size

media code	media description
A	G7 Dualglass high performance media combined with water removal scrim. $\beta x_{[c]} = 1000 \ (\beta x = 200)$
Μ	G7 Dualglass our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{[c]} = 1000 (\beta x = 200)$
W	Stainless steel wire mesh media $\beta x_{[c]} = 2 \ (\beta x = 2)$ nominally rated

Hy-Pro G7 Dualglass media performance


Typical cellulose media performance

73

FILTRATION

www.filterelement.com

TFR ASSEMBLY PART NUMBER GUIDE

BOLD text denotes standard options for each size (TFR1, TFR2, TFR3) that are available for quick shipment. Non-standard options are subject to longer lead times.

table 1	
code	series
1	1 1/4" maximum inlet
2	1 1/2" maximum inlet
3	2 1/2" maximum inlet

table 4	element length*		
code	(series availability)		
6	6" nominal (TR1)		
8	8" nominal (TR1, TR2)		
11	11" nominal (TR1, TR2)		
15	15" nominal (TR3)		
18	18" nominal (TR2)		
19	19" nominal (TR3)		
34	34" nominal (TR3)		

*Improper length selection could result in reservoir foaming. Consider diffuser and element length and anticipated reservoir fluid level when sizing. To protect against foaming using longer lengths is recommended.

table 2	porting options		
code	(series availability)		
B3	BSPT 1" (TFR1)		
B4	BSPT 1 1/4" (TFR1)		
B5	BSPT 1 1/2" (TFR2)		
F3	1 1/2" SAE Code 61 Flange (TFR2)		
F4	2 1/2" SAE Code 61 Flange (TFR3)		
S3	SAE-16, 1" (TFR1)		
S4	SAE-20, 1 1/4" (TFR1, TFR2)		
S5	SAE-24, 1 1/2" (TFR2)		
N3	NPT 1" (TFR1)		
N5	NPT 1 1/2" (TFR2)		

table 5	
code	seal material
В	Buna-Nitrile
v	Viton-Fluorocarbon

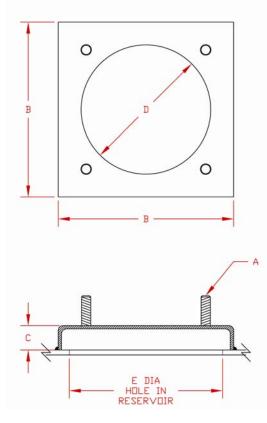
table 6			
code	indicator		
м	Visual Pressure Gage		
E D	Electrical Pressure Switch (3 wire) Electrical Pressure Switch (DIN)		
X	No indicator (pressure ports plugged)		

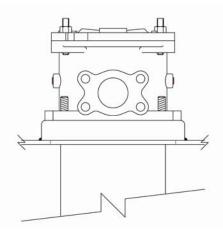
table 3		
code	filtration rating	media type
1M	$\beta 2.5[c] = 1000 \ (\beta 1 = 200)$	G7 Dualglass
3M	$\beta 5[c] = 1000 \ (\beta 3 = 200)$	G7 Dualglass
6M	$\beta7[c] = 1000 \ (\beta6 = 200)$	G7 Dualglass
10A	$\beta 12[c] = 1000 \ (\beta 12 = 200)$	Water removal
10M	$\beta 12[c] = 1000 \ (\beta 12 = 200)$	G7 Dualglass
16A	$\beta 16[c] = 1000 \ (\beta 17 = 200)$	Water removal
16M	$\beta 16[c] = 1000 \ (\beta 17 = 200)$	G7 Dualglass
25A	β22[c] = 1000 (β25 = 200)	Water removal
25M	$\beta 22[c] = 1000 \ (\beta 25 = 200)$	G7 Dualglass
25W	25u nominal	wire mesh
40W	40u nominal	wire mesh
74W	74u nominal	wire mesh
149W	149u nominal	wire mesh

table 7	
code	bypass valve setting
Omit	25 psid, 1,77 bar (standard)
43	43 psid, 3 bar (consult Hy-Pro Engineer)

Hy-Pro filters are tested to the latest industry standard ISO16889 (replacing ISO4572) resulting in A new scale for defining particle sizes and determining

A new scale for defining particle sizes and determining filtration ratio (formerly known as beta ratio)

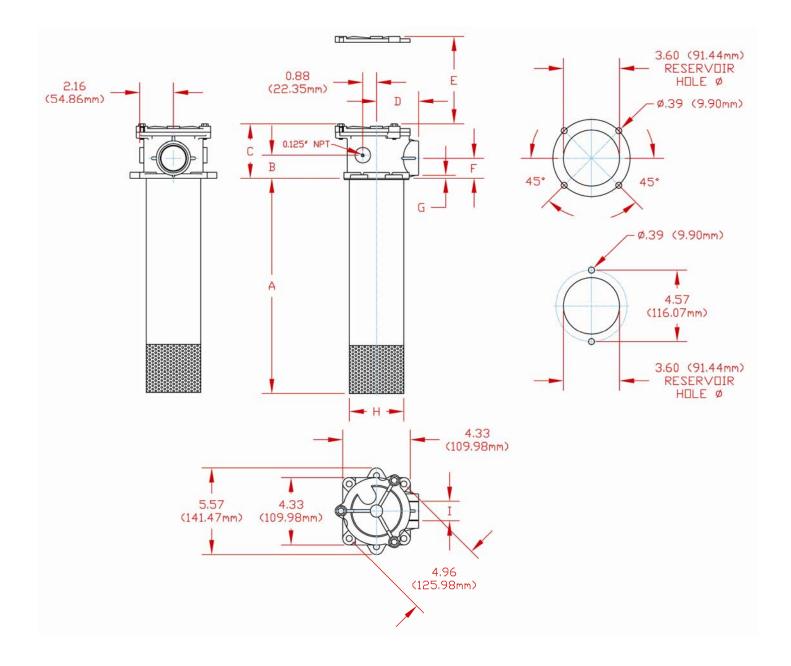

New (ISO16889) vs Old (ISO4572) size comparison


βx(c)=1000 (ISO16889)	2.5	5	7	12	22
βx=200 (ISO4572)	<1	3	6	12	25

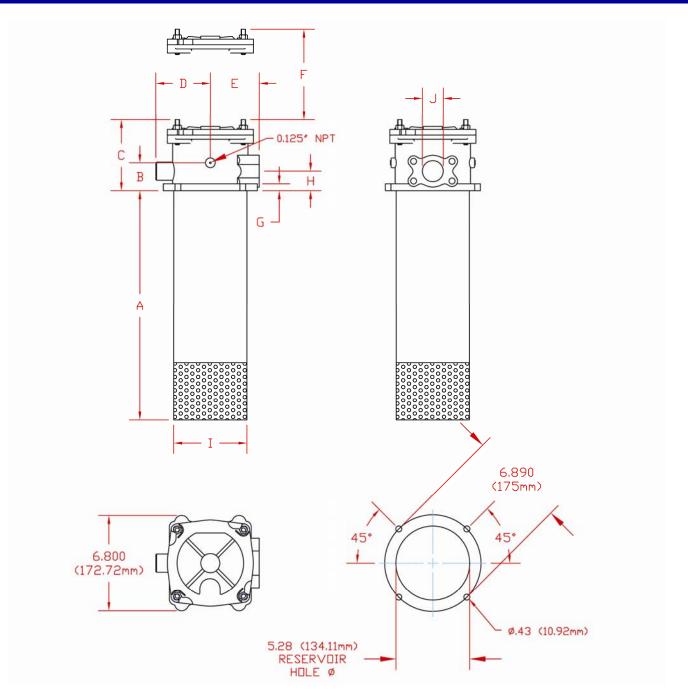
www.filterelement.com

TFR MOUNTING FLANGES

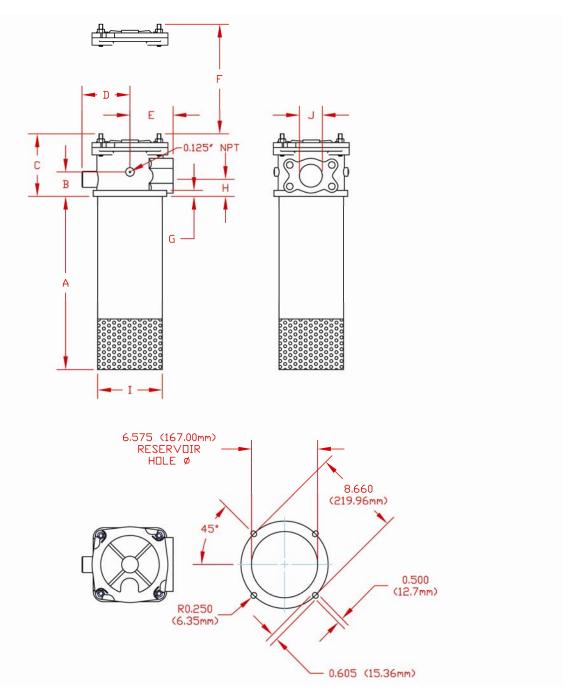
part num.			IN (mm)		
(series)	Α	В	С	D	E
TFR-WF1	5/16-18	5.33	1.00	3.59	3.8 - 4.5
(TFR1)	UNC-2A	(135,4)	(25,4)	(91,2)	(96 - 114)
TFR-WF2	3/8-16	7.18	1.00	5.30	5.5 - 6.25
(TFR2)	UNC-2A	(182,4)	(25,4)	(134,5)	(140 - 158)
TFR-WF3	3/8-16	7.80	1.00	6.59	6.75 - 7.25
(TFR3)	UNC-2A	(194,7)	(25,4)	(167,5)	(171 - 184)


TFR PRESSURE GAGES & PRESSURE SWITCHES

Part	Connection		Wiring		Set	Stud
Number	Туре	N. Closed	N. Open	Common	Point	Connection
PS25E	3 Wire	Green	Red	Black	22 psi (rising)	1/8" NPT
PS25D	DIN 43650	Green: 2	Red: 3	Black : 1	22 psi (rising)	1/8" NPT


TFR1 INSTALLATION DRAWING

Length code		Dimension IN (MM)								
(table 4)	A	В	С	D	E	F	G	Н	Ι	J
6	7.80 (198)	1.50 (38,1)	3.55 (90,2)	2.68 (68)	11.85 (301)	1.1 (28) or 1.26 (32)	0.24 (6)	3.50 (89)	1" or 1 1/4"	4.96 (126)
8	9.85 (250,2)	1.50 (38,1)	3.55 (90,2)	2.68 (68)	13.80 (350,5)	1.1 (28) ~ 1.26 (32)	0.24 (6)	3.50 (89)	1" or 1 1/4"	4.96 (126)
11	13.8 (350,5)	1.50 (38,1)	3.55 (90,2)	2.68 (68)	18.50 (470)	1.1 (28) ~ 1.26 (32)	0.24 (6)	3.50 (89)	1" or 1 1/4"	4.96 (126)


TFR2 INSTALLATION DRAWING

Length code		Dimension IN (MM)								
(table 4)	A	В	С	D	E	F	G	Н	I	J
8	9.85 (250)	1.97 (50)	5.20 (130)	3.94 (100)	3.54 (90)	9.25 (235) EL removal	0.47 (12)	1.42 (36)	5.24 (136)	1 1/2" port
11	12.6 (320)	1.97 (50)	5.20 (130)	3.94 (100)	3.54 (90)	12.0 (305) EL removal	0.47 (12)	1.42 (36)	5.24 (136)	1 1/2" port
18	20.7 (527)	1.97 (50)	5.20 (130)	3.94 (100)	3.54 (90)	18.7 (475) EL removal	0.47 (12)	1.42 (36)	5.24 (136)	1 1/2" port

TFR3 INSTALLATION DRAWING

Length					Dimension					
code					IN (MM)					
(table 4)	А	В	С	D	E	F	G	Н	I	J
11	14.6 (370)	2.16 (55)	6.10 (155)	4.50 (114)	4.33 (110)	12.5 (318)	0.55 (14)	2.16 (55)	6.52 (165,5)	2.5" Code 61
19	22.0 (560)	2.16 (55)	6.10 (155)	4.50 (114)	4.33 (110)	20.5 (520)	0.55 (14)	2.16 (55)	6.52 (165,5)	2.5" Code 61
34	37.0 (940)	2.16 (55)	6.10 (155)	4.50 (114)	4.33 (110)	35.5 (901)	0.55 (14)	2.16 (55)	6.52 (165,5)	2.5" Code 61

LF/LFM - Low Pressure High Flow Assemblies

LF flow rate to 560 lpm, 150 gpm / LFM flow rate to 16875 lpm, 4500 gpm

PRODUCT SPECIFICATIONS & FEATURES

APPLICATIONS

- Hydraulic and Lubrication oil
- Fuel and Fuel oil
- Rolling mill oil
- Processing liquids
- Bulk oil handling Transfer and clean up
- Off-line systems and flushing
- Power generation
- Primary metals
- Mobile flushing systems
- Particulate and water removal
- Transfer line machining coolants
- Large gearbox filtration
- High flow Return-line filtration

Max Flow Rate Visc: 150 SUS, 32 cSt	Recommended Series
100 gpm (375 lpm)	LF Single length
150 gpm (560 lpm)	LF Double length
300 gpm (1125 lpm)	2 x LF Double parallel mount
4500 gpm (16875 lpm)	LFM multiple element series
	(call for sizing assistance)
Operating Pressure	Standard 150 psi (10 bar)
	Available up to 3000 psi (212 bar)
Pressure Indicators	
Up to 250 psi Operating	Two visual pressure gages
	or differential indicator available
450 psi and higher	Differential pressure
	Indicator required
Maximum Temperature	Standard 250 F
	Call for high temperature specs

ASME U & UM CODE REQUIREMENTS

Standard vessels are manufactured to ASME code standards, but not certified. ASME U and UM code certification is available as an option. See table 9 under the Filter Assembly part number guide on page 2 for ordering detail. Please call for price adders when specifying Code certification.

- Carbon steel construction standard (304 & 316 stainless available).
- Duplexing option available for continuous filtration during filter element change-out.
- HP106 and HP107 element series have integral bypass valve (new bypass every time element is changed avoids bypass failure).
- Pressure gages are supplied standard for housings up to 250 psi operating (differential indicator is available). Differential pressure indicator is supplied standard for housings with operating pressure 450 psi and higher.
- Easy to service swing-lid design with eye nuts assures no lost hardware, hydraulic lift option available.
- Marine grade epoxy exterior finish for non-stainless steel assemblies
- Accepts coreless design with positive o-ring seals or industry standard 6 x 18 and 6 x 36 with gasket seals.
- Vent/bleed port standard in housing cover.
- 2" drain and cleanout port allows for quick draining and easy access for sump cleanout.
- Hy-Pro Dualglass filter element media technology validated per ISO16889 multipass and DFE (modified ISO16889) industry leading multipass testing.

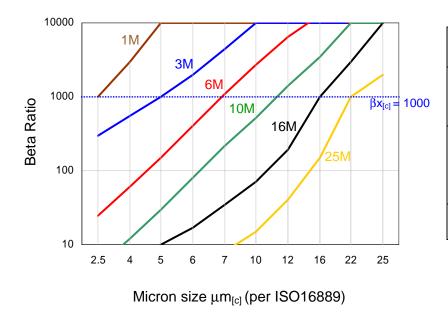
FILTRATION

79

FILTER MEDIA ... THE HEART OF A FILTER

Dynamic Filter Efficiency (DFE) Testing

Revolutionary test methods assure that DFE rated elements perform true to rating even under demanding variable flow and vibration conditions. Today's industrial and mobile hydraulic circuits require elements that deliver specified cleanliness under ALL circumstances. Wire mesh supports the media to ensure against cyclical flow fatigue, temperature, and chemical resistance failures possible in filters with synthetic support mesh. Contact your distributor or Hy-Pro for more information and published articles on DFE testing.

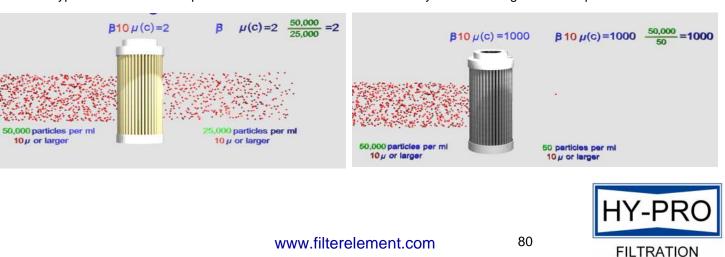

Media Options

Through extensive testing we have developed media choices to handle any application. Options include G7 Dualglass, G7 Dualglass + Water Removal and Stainless steel wire mesh.

Fluid Compatibility

Petroleum based fluids, water glycol, polyol ester, phosphate ester, high water based fluids, and many other synthetics. Contact us for seal material selection assistance.

FILTER MEDIA SPECIFICATIONS



media code	media description
A	G7 Dualglass high performance media combined with water removal scrim. $\beta x_{[c]} = 1000 (\beta x = 200)$
Μ	G7 Dualglass our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{[c]} = 1000 (\beta x = 200)$
W	Stainless steel wire mesh media $\beta x_{[c]} = 2 (\beta x = 2)$ nominally rated

Hy-Pro G7 Dualglass media performance

Glass Media Code Filtration Efficiency (Beta Ratio) vs Micron Size

Typical cellulose media performance

FILTER ELEMENT PERFORMANCE DATA

Elements Tested to ISO quality standards

Collapse and burst resistance
Fabrication and Integrity test
Material compatibility with fluids
Flow fatigue characteristics
Pressure drop vs. flow rate
Multi-pass performance testing

Coreless Filter Element Technology

Hy-Pro coreless elements are featured in the FCL series. The elements are oversized to yield extended element life and handle a wide variety of high viscosity oils. Hy-Pro coreless elements utilize wire mesh pleat support which ensures that the pleats won't collapse or lose integrity.

DIFFERENTIAL PRESSURE GAGES

Differential Pressure Gauges + Switches

Differential pressure gauges with green to red display ensures proper monitoring of filter element condition. DIN connector switch can be added to any pressure gauge.

Available with terminal differential settings, visual green to red and alarm switch, at 22 psid (1.56 bar) and 45psid (3.19 bar).

LF, LFM FILTER ASSEMBLY SELECTION AND SIZING GUIDELINES

Effective filter sizing requires consideration of flow rate, viscosity (operating and cold start), fluid type and degree of filtration. When properly sized, bypass during cold start can be avoided/minimized and optimum element efficiency and life achieved. The filter assembly differential pressure values provided for sizing differ for each media code, and assume 150 SSU (32Cts) viscosity and 0.86 fluid specific gravity. Use the following steps to identify the correct high pressure filter assembly.

1. Calculate Δp coefficient at both operating and cold start viscosity:

		Actual Operating Viscosity (SSU)		Actual S.G.
∆p Coefficient	=		Х	
		150		0.86

2. Calculate actual clean filter assembly Δp at both operating and cold start viscosity:

Actual assembly clean Δp = Flow rate x Δp Coefficient x Assembly Δp factor (from sizing table)

3. Sizing Recommendations to optimize performance and permit future flexibility:

- To avoid or minimize bypass during cold start the actual assembly clean ∆p calculation should be repeated for start-up conditions if cold starts are frequent.
- Actual assembly clean Δp should not exceed 5 psid at normal operating viscosity.
- If suitable assembly size is approaching the upper limit of the recommended flow rate at the desired degree of filtration consider increasing the assembly to the next larger size if a finer degree of filtration might be preferred in the future. This practice allows the future flexibility to enhance fluid cleanliness without compromising clean △p or filter element life.
- Once a suitable filter assembly size is determined consider increasing the assembly to the next larger size to optimize filter element life and avoid bypass during cold start.
- When using water glycol or other specified synthetics we recommend increasing the filter assembly by 1~2 sizes.
- High viscosity fluid (ie gear lube ISO 220) will typically display very high viscosity as the temperature drops below 100f. For such applications avoiding bypass during start-up might not be possible.

Media code	Port size	L36, 39 Max flow gpm (lpm)	Length code	∆p factor* (psid/gpm)	∆p factor* (bar/lpm)	Length code	∆p factor* (psid/gpm)	∆p factor* (bar/lpm)
1M		100 (375)		0.059	0.00113		0.047	0.00090
ЗM		150 (560)		0.050	0.00096		0.042	0.00081
6M	2"	150 (560)	16,18	0.048	0.00092	36,39	0.041	0.00079
10M	Flange, NPT	150 (560)		0.046	0.00087		0.040	0.00077
16M		200 (750)		0.043	0.00082		0.038	0.00073
25M		200 (750)		0.040	0.00077		0.037	0.00071
**W		300 (1125)		0.037	0.00071		0.035	0.00067
1M		150 (560)		0.047	0.00078		0.034	0.00065
ЗM		200 (750)		0.038	0.00073		0.030	0.00058
6M	3"	200 (750)	16,18	0.036	0.00069	36,39	0.029	0.00055
10M	Flange, NPT	250 (935)		0.034	0.00066		0.028	0.00053
16M	1	300 (1125)		0.031	0.00060		0.026	0.00050
25M	1	300 (1125)		0.028	0.00054	1	0.024	0.00046
**W	1	300 (1125)		0.025	0.00048	1	0.022	0.00042

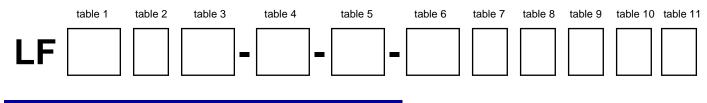
LF Single Element Assembly (housing + element) Differential Pressure Factors

*Max flow rate and Δp factor assumes v = 150 sus, 32 Centistokes. See Δp viscosity conversion formula for viscosity

LFM3 Multi-Element Assembly (housing + element) Differential Pressure Factors

Media code	Length code	Max flow gpm (lpm)	Port size	∆p factor* (psid/gpm)	∆p factor* (bar/lpm)
1M		600 (2250)		0.0081	0.000154
ЗM		800 (3000)		0.0055	0.000105
6M	36, 39	900 (3375)	4"	0.0051	0.000098
10M		1300 (4875)	Flange	0.0045	0.000087
16M		1300 (4875)		0.0041	0.000079
25M		1500 (5625)		0.0035	0.000067
**W		1500 (5625)		0.0027	0.000052
1M		600 (2250)		0.0075	0.000144
ЗM		800 (3000)		0.005	0.000096
6M	36, 39	900 (3375)	6"	0.0045	0.000087
10M		1300 (4875)	Flange	0.0039	0.000058
16M		1300 (4875)	1	0.0035	0.000067
25M		1500 (5625)	1	0.0029	0.000059
**W	1	1500 (5625)		0.0021	0.000041

*Max flow rate and Δp factor assumes v = 150 sus, 32 Centistokes. See Δp viscosity conversion formula for viscosity


LFM4 Multi-Element Assembly (housing + element) Differential Pressure Factors

Media code	Length code	Max flow gpm (lpm)	Port size	∆p factor* (psid/gpm)	∆p factor* (bar/lpm)
1M		600 (2250)		0.0067	0.000129
ЗM		800 (3000)		0.0048	0.000092
6M	36, 39	1000 (3750)	4"	0.0044	0.000084
10M		1300 (4500)	Flange	0.0040	0.000077
16M		1400 (5250)		0.0037	0.000071
25M		1500 (6560)		0.0032	0.000061
**W		1500 (5625)	-	0.0025	0.000048
1M		600 (2250)		0.0062	0.000119
ЗM		800 (3000)		0.0043	0.000083
6M	36, 39	900 (3375)	6"	0.0039	0.000075
10M		1300 (4875)	Flange	0.0034	0.000065
16M	1	1300 (4875)	1	0.0031	0.000059
25M	1	1500 (5625)	1	0.0026	0.000050
**W]	1500 (5625)		0.00207	0.000038

*Max flow rate and Δp factor assumes v = 150 sus, 32 Centistokes. See Δp viscosity conversion formula for viscosity

LF FILTER ASSEMBLY PART NUMBER GUIDE

FILTER ELEMENT PART NUMBER GUIDE

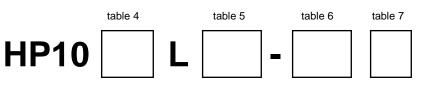


table 2

39

table 1	
code	Elements per vessel
omit	1 element
M3	3 elements
M4	4 elements
M9	9 elements
M14	14 elements
M22	22 elements

table 4	
code	Element Configuration
	HP101 series 6" OD x 2.6" ID,
1	gasket seals. Recommended
	change-out 60 psid (4,2 bar)
	HP105 coreless series, positive
5	o-ring seals. Recommended
	change-out 60 psid (4,2 bar)
	HP106 element with bypass,
6	25 psid (1,8 bar) bypass, orings
	change-out 22 psid (1,5 bar)
	HP107 element with bypass
7	50 psid (3,5 bar) bypass, orings
	change-out 45 psid (3,2 bar)
	USE HP8314 for element P/N
8	Interchanges with Pall HC8314,
	NO BYPASS, oring seals, max
	change-out 45 psid (3,2 bar)

code	Materials
omit	Epoxy coated steel
S	304 Stainless steel
	•
table 5	
code	Element length
18	Single (LF only)
36	Double, element code 1,5,6,7

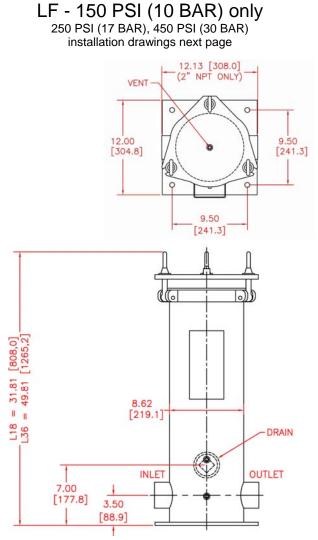
Double, element 8 (HP8314)

table 6	
code	Filtration rating
1M	β2.5[c] = 1000 (B1 = 200)
ЗM	β5[c] = 1000 (B3 = 200)
6M	β7[c] = 1000 (B6 = 200)
6A	β 7[c] = 1000 + water removal
10M	β12[c] = 1000 (B12 = 200)
10A	$\beta 12[c] = 1000 + water removal$
16M	β17[c] = 1000 (B17 = 200)
16A	β 17[c] = 1000 + water removal
25M	β22[c] = 1000 (B25 = 200)
25A	$\beta 22[c] = 1000 + water removal$
25W	25u nominal wire mesh
40M,W	β35[c] = 1000 (B40 = 200)
	or 40u nominal wire mesh
74W	74u nominal wire mesh
149W	149u nominal wire mesh
250W	250u nominal wire mesh

table 3	
code	Connections
B2*	2" BSPP
B3*	3" BSPP
B4*	4" BSPP
C2	2" SAE Code-61 Flange
C3	3" SAE Code-61 Flange
D2	DN50 DIN 2633 Flange
D3	DN65 DIN 2633 Flange
D4	DN100 DIN 2633 Flange
D5	DN125 DIN 2633 Flange
D6	DN150 DIN 2633 Flange
D8	DN200 DIN 2633 Flange
D10	DN250 DIN 2633 Flange
F2	2" ANSI Flange
F3	3" ANSI Flange
F4	4" ANSI Flange
F6	6" ANSI Flange
F8	8" ANSI Flange
F10	10" ANSI Flange
F12	12" ANSI Flange
N2	NPT 2"
N3	NPT 3"
N4	NPT 4"

*BSPP, DIN Flanges, and Vitolic connections options are subject to longer delivery time.

table 11	Max Operating
code	Pressure
omit	150 psi (standard)
V	250 psi, 17 bar max
W*	450 psi, 30 bar max
X*	1000 psi, 66 bar max


*Slip and blind flange bolt arrangement dimensions change from standard (9 bolts)

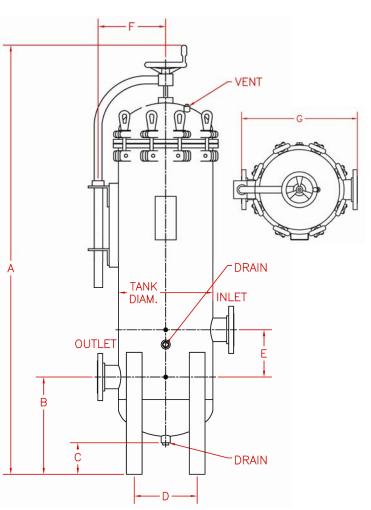
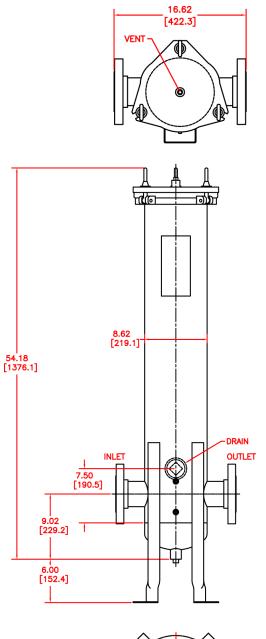
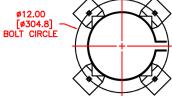
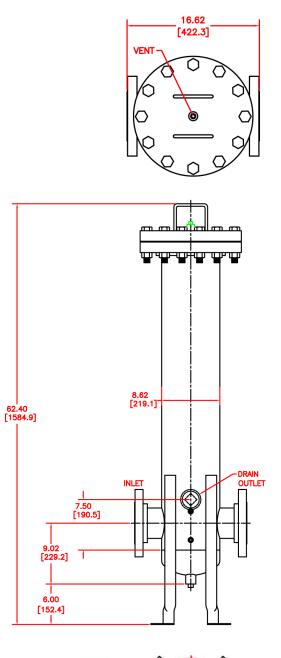


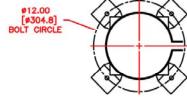
table 7	
code	Seals
В	Buna (Nitrile)
E	EPR
V	Viton (Fluoro)

table 8 code	Indicator
Х	None (ported, plugged)
Р	Two pressure gages
D	22 psid visual ∆p gage, + electric alarm (120V AC)
E	22 psid visual ∆p gage
F	45 psid visual ∆p gage, + electric alarm (120V AC)
G	45 psid visual Δp gage


table 9	Sampling ports
code	(Not required)
S	Valve sample ports
Х	No ports
table 10	ASME code
code	(Not required)
coue	(Not required)
omit	No Code (Standard)




	Element	Tank	Port	Est.							
Series	Qty.	Diam.	Sizes	Weight	Α	В	С	D*	Е	F	G*
			2	485 Lbs	81.9 [2079,6]	18.5 [470,8]	6.0 [152,4]	10.0 [254,0]	9.0 [228,6]	11.9 [301,8]	24.0 [609,6]
LFM3	3	16	3	220 Kg	81.9 [2079,6]	18.5 [470,8]	6.0 [152,4]	10.0 [254,0]	9.0 [228,6]	11.9 [301,8]	24.0 [609,6]
		[406,4]	4		81.9 [2079,6]	18.5 [470,8]	6.0 [152,4]	10.0 [254,0]	9.0 [228,6]	11.9 [301,8]	24.0 [609,6]
			2	550 Lbs	81.9 [2079,6]	18.5 [470,8]	6.0 [152,4]	12.0 [304,8]	9.0 [228,6]	12.9 [327,2]	26.0 [660,4]
LFM4	4	18	3	250 Kg	81.9 [2079,6]	18.5 [470,8]	6.0 [152,4]	12.0 [304,8]	9.0 [228,6]	12.9 [327,2]	26.0 [660,4]
		[457,2]	4		81.9 [2079,6]	18.5 [470,8]	6.0 [152,4]	12.0 [304,8]	9.0 [228,6]	12.9 [327,2]	26.0 [660,4]
			3	645 Lbs	81.9 [2079,6]	18.5 [470,8]	6.0 [152,4]	18.0 [457,2]	9.0 [228,6]	15.9 [403,4]	32.0 [812,8]
LFM9	9	24	4	293 Kg	81.9 [2079,6]	18.5 [470,8]	6.0 [152,4]	18.0 [457,2]	9.0 [228,6]	15.9 [403,4]	32.0 [812,8]
		[609,6]	6		81.9 [2079,6]	18.5 [470,8]	6.0 [152,4]	18.0 [457,2]	9.0 [228,6]	15.9 [403,4]	32.0 [812,8]
			3	710 Lbs	81.9 [2079,6]	18.5 [470,8]	6.0 [152,4]	24.0 [609,6]	9.0 [228,6]	18.9 [479,6]	38.0 [965,2]
LFM14	14	30	4	323 Kg	81.9 [2079,6]	18.5 [470,8]	6.0 [152,4]	24.0 [609,6]	9.0 [228,6]	18.9 [479,6]	38.0 [965,2]
		[762]	6		81.9 [2079,6]	18.5 [470,8]	6.0 [152,4]	24.0 [609,6]	9.0 [228,6]	18.9 [479,6]	38.0 [965,2]
			4	900 Lbs	81.9 [2079,6]	24.5 [623,2]	6.0 [152,4]	30.0 [762,0]	15.0 [381,0]	21.9 [555,8]	44.0 [1117,6]
LFM22	22	36	6	410 Kg	81.9 [2079,6]	24.5 [623,2]	6.0 [152,4]	30.0 [762,0]	15.0 [381,0]	21.9 [555,8]	44.0 [1117,6]
		[914,4]	8		81.9 [2079,6]	24.5 [623,2]	6.0 [152,4]	30.0 [762,0]	15.0 [381,0]	21.9 [555,8]	44.0 [1117,6]
			6	2080 Lbs	81.9 [2079,6]	24.5 [623,2]	6.0 [152,4]	36.0 [914,4]	15.0 [381,0]	24.9 [632,0]	50.0 [1270,0]
LFM31	31	42	8	945 Kg	81.9 [2079,6]	24.5 [623,2]	6.0 [152,4]	36.0 [914,4]	15.0 [381,0]	24.9 [632,0]	50.0 [1270,0]
		[1067]	10		81.9 [2079,6]	24.5 [623,2]	6.0 [152,4]	36.0 [914,4]	15.0 [381,0]	24.9 [632,0]	50.0 [1270,0]
			8	2450 Lbs	81.9 [2079,6]	24.5 [623,2]	6.0 [152,4]	42.0 [1066,8]	15.0 [381,0]	27.9 [708,2]	56.0 [1422,4]
LFM38	38	48	10	1115 Kg	81.9 [2079,6]	24.5 [623,2]	6.0 [152,4]	42.0 [1066,8]	15.0 [381,0]	27.9 [708,2]	56.0 [1422,4]
		[1219]	12		81.9 [2079,6]	24.5 [623,2]	6.0 [152,4]	42.0 [1066,8]	15.0 [381,0]	27.9 [708,2]	56.0 [1422,4]


*Dimensional tolerance up to +/- 0.25" [6,3mm]. Adding sample ports adds ~ 4.0" [101mm] to G dimension (port to port).

LF - 450 PSI (30 BAR)

www.filterelement.com

86

S series Low Pressure Spin-ons

Featuring Hy-Pro G7 Dualglass high performance filter element technology

APPLICATIONS

- Hy-Pro Low pressure S series filters are ideal for installation on the return line to remove contaminate ingested or generated by the system. Functions include off-line filtration (kidney loop or filter cart) and some suction applications.
- Automotive manufacturing/assembly machine tools.
- Mobile applications such as waste haulers & transit .
- Filter carts and filter panels.
- Power unit return line/suction.

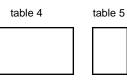
"S" FEATURES, BENEFITS, ADVANTAGES

DFE rated elements	G7 Dualglass elements are DFE
	rated to assure performance even
	when exposed to the toughest
	conditions that hydraulic systems
	can generate (See DFE for details).
Low housing	Unique internal flow paths provide
pressure drop	low resistance to flow.
	(Low pressure drop)
True Differential	Visual differential bar gage makes
Pressure gage	element service decision easier
	than typical pressure gages.

PRODUCT SPECIFICATIONS Operating Pressure S75 200 psi (14 bar) max S75D 200 psi (14 bar) max S76 200 psi (14 bar) max Flow rate S75 50 gpm (186 lpm) S75D 100 gpm (373 lpm) S76 18 gpm (67 lpm) Design safety factor 2.5:1 Element collapse 100 psid (7 bar) Assembly material Head: Aluminum Canister: Steel Fluid compatibility Compatible with all petroleum, (ISO 2948) based oils, High Water Based, oil/water emulsion, and specified synthetic fluids with Flurocarbon or EPR seals (call factory) Bypass setting 25 psid (1.77 bar) standard see reverse for other options Weight (w/element) S75 single 5.5 lbs S75 double 12 lbs S76 single 2.3 lbs

Nitrile -40°F(-40°C) ~ 225°F (107°C)

Viton -15°F(-26°C) ~ 275°F(135°C)



Temperature rating

SPIN-ON ASSEMBLY PART NUMBER GUIDE

table 1 table 2

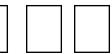


table 6 table 7

SPIN-ON ELEMENT PART NUMBER GUIDE

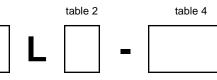


table 3

table 1	
code	series
75	Single head, 50 gpm, 186 lpm max
75D*	Double head, 100 gpm, 373 lpm max
76	Single head, 30 gpm, 111 lpm max

*For 75D element replacement series is HP75

table 4		
code	filtration rating	media type
1M	$\beta 2.5_{[c]} = 1000 \ (\beta 1 = 200)$	G7 Dualglass
3M	$\beta 5_{[c]} = 1000 \ (\beta 3 = 200)$	G7 Dualglass
6M	$\beta 7_{[c]} = 1000 \ (\beta 6 = 200)$	G7 Dualglass
10C	$\beta 12_{[c]} = 2 \ (\beta 12 = 2)$	Cellulose
12A	$\beta 12_{[c]} = 1000 \ (\beta 12 = 200)$	G7+H ₂ O removal
12M	$\beta 12_{[c]} = 1000 \ (\beta 12 = 200)$	G7 Dualglass
25A	$\beta 22_{[c]} = 1000 \ (\beta 25 = 200)$	G7+H ₂ O removal
25C	$\beta 22_{[c]} = 2 \ (\beta 25 = 2)$	Cellulose
25M	$\beta 22_{[c]} = 1000 \ (\beta 25 = 200)$	G7 Dualglass
40W	40u nominal	wire mesh
74W	74u nominal	wire mesh
149W	149u nominal	wire mesh

table 5	
code	indicator
М	Visual Pressure Gage
E	Electrical Pressure Switch
D*	Visual Differential Indicator on right side (75,75D only)

table 6	
code	bypass valve
1	3 psid, 0,21 bar (suction)
2	5 psid 0,35 bar (suction)
3	15 psid, 1,06 bar
4	25 psid, 1,77 bar (standard)
5*	50 psid, 3,5 bar (S75D only)
х	No bypass

*ΔP indicators & pressure gauges are indicate at 25 psid & 25 psi respectively even if the bypass is set for 50 psid (3,5 bar) crack. S75D series only.

table 3	porting options
code	(series availability)
N1	BSPT 3/4" (76)
N2*	NPT 3/4" (76)
N3	NPT 1" (76)
N4*	NPT 1 1/4" (75)
N5*	NPT 1 1/2" threaded port + 2" SAE-32 Code 61 Flange (75D)
B5	1 1/4" BSP (75)
S1	SAE-8 (76)
S2	SAE-12 (76)
S4	SAE-20 (75)
S5*	SAE 1 1/2" threaded ORB port + 2" SAE-32 Code 61 Flange (75D)

Longer delivery and quantity requirements for non-standard ports

table 7	
code	seal material
В	Buna-Nitrile
V	Viton (75 only)

FILTER MEDIA SELECTION GUIDE

code	media description
A	"G7 Dualglass" high performance glass media
	combined with water removal scrim.
	$\beta x[c] = 1000 \ (\beta x = 200)$
С	Nominally rated "Cellulose" fiber media
	$\beta x[c] = 2 \ (\beta x = 2)$
М	"G7 Dualglass" is our latest generation of
	DFE rated, high performance glass media
	for use in all hydraulic fluids.
	$\beta x[c] = 1000 \ (\beta x = 200)$
W	Stainless steel "Wire mesh" media

Hy-Pro filters are tested to the latest industry standard ISO16889 (replacing ISO4572) resulting in A new scale for defining particle sizes and determining filtration ratio (formerly known as beta ratio)

New (ISO16889) vs Old (ISO4572) size comparison

βx(c)=1000 (ISO16889)	2.5	5	7	12	22
βx=200 (ISO4572)	<1	3	6	12	25

FILTER MEDIA ... THE HEART OF A FILTER

Dynamic Filter Efficiency (DFE) Testing

Revolutionary test methods assure that DFE rated elements perform true to rating even under demanding variable flow and vibration conditions. Today's industrial and mobile hydraulic circuits require elements that deliver specified cleanliness under ALL circumstances. Wire mesh supports the media to ensure against cyclical flow fatigue, temperature, and chemical resistance failures possible in filters with synthetic support mesh. Contact your distributor or Hy-Pro for more information and published articles on DFE testing.

Media Options

Through extensive testing we have developed media choices to handle any application. Options include G6 Dualglass, Cellulose, and Wire mesh (stainless).

Fluid Compatibility

Petroleum based fluids, water glycol, polyol ester, phosphate ester, high water based fluids, and many other synthetics. Contact us for seal material selection assistance.

SPIN-ON ASSEMBLY FLOW vs PRESSURE DROP DATA

Media Code	S764 assembly (20 gpm max)	S768 assembly (30 gpm max)	S754 assembly (40 gpm max)	S758 assembly (60 gpm max)	S75D4 assembly (80 gpm max)	S75D8 assembly (120 gpm max)
1M	1.210 (0.0232)	0.726 (0.0139)	0.521 (0.0100)	0.313 (0.0060)	0.261 (0.0050)	0.156 (0.0030)
3C	0.773 (0.0148)	0.464 (0.0089)	0.429 (0.0082)	0.257 (0.0049)	0.214 (0.0041)	0.129 (0.0025)
3M	0.909 (0.0174)	0.545 (0.0104)	0.0367 (0.0070)	0.220 (0.0042)	0.183 (0.0035)	0.110 (0.0021)
6M	0.695 (0.0133)	0.417 (0.0080)	0.298 (0.0057)	0.179 (0.0034)	0.149 (0.0028)	0.089 (0.0017)
10C	0.500 (0.0096)	0.300 (0.0057)	0.182 (0.0035)	0.109 (0.0021)	0.091 (0.0018)	0.055 (0.0011)
12M	0.471 (0.0090)	0.283 (0.0054)	0.168 (0.0032)	0.101 (0.0019)	0.084 (0.0016)	0.050 (0.0009)
25A	0.479 (0.0092)	0.287 (0.0055)	0.178 (0.0034)	0.107 (0.0020)	0.089 (0.0017)	0.053 (0.0010)
25C	0.444 (0.0085)	0.266 (0.0051)	0.162 (0.0031)	0.097 (0.0018)	0.081 (0.0016)	0.049 (0.0009)
25M	0.43 (0.0082)	0.258 (0.0049)	0.158 (0.0030)	0.095 (0.0017)	0.079 (0.0015)	0.047 (0.0009)
74W	0.172 (0.0033)	0.103 (0.0019)	0.063 (0.0012)	0.038 (0.0007)	0.032 (0.0006)	0.019 (0.0003)
149W	0.129 (0.0024)	0.077 (0.0014)	0.047 (0.0009)	0.028 (0.0006)	0.024 (0.0005)	0.014 (0.0002)

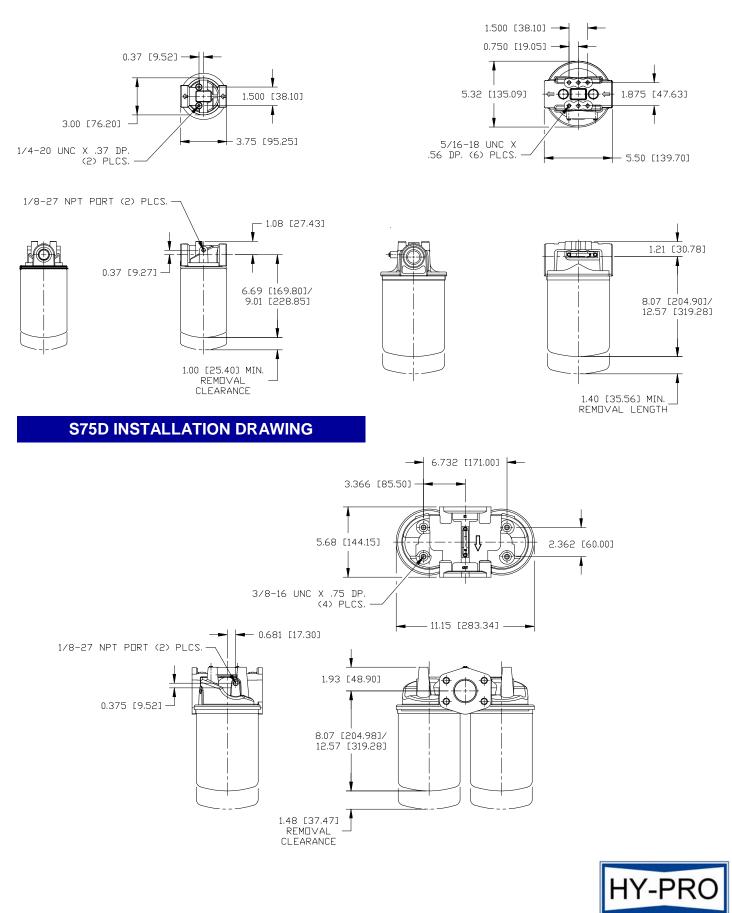
Differential Pressure Flow Factor - △P/GPM (△Bar/Ipm)

Pressure Drop Calculation

Pressure drop curves based on oil viscosity of 150 SSU, and specific gravity = 0.86. Δp across element is proportionally related to viscosity and specific gravity. For new Δp use the following conversion formula:

 Δp element = Δp curve x Vis/150 x SG/0.86

ELEMENT SERVICING


- 1. Stop and/or isolate the power unit from the filter.
- 2. Relieve pressure in the filter line and drain fluid.
- 3. Lubricate filter gasket prior to installation.
- 4. Screw on filter until gasket makes contact then tighten one half turn.
- 5. Bleed air from system.
- 6. Start system and check for leaks.

S76 INSTALLATION DRAWING

S75 INSTALLATION DRAWING

For more detailed or full-sized drawings contact Hy-Pro Filtration

FILTRATION

FILTER ASSEMBLIES HIGH PRESSURE

In-Line Pressure Filters Bi-Directional Flow Pressure Filters Manifold Mount Pressure Filters

> 12955 Ford Drive. Fishers, IN 46038 www.filterelement.com ph 317.849.3535, fx 317.849.9201

PF2 FILTER HOUSING

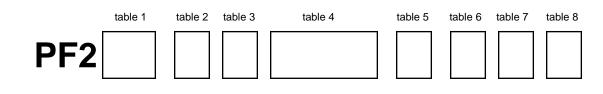
PF2 High Pressure In-Line Filter

FEATURES, BENEFITS, ADVANTAGES

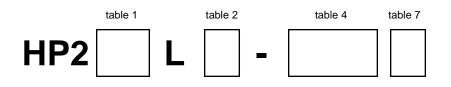
DFE rated elements	G7 Dualglass and PE glass
	elements are DFE rated to assure
	performance even when exposed
	to the toughest hydraulic systems
	(See DFE literature for details)
Circumferential	Circumferential seal on the bowl
o-ring bowl seal	eliminates leading. (No Drips)
Low housing	Unique internal flow paths provide
pressure drop	low resistance to flow.
	(Low pressure drop)
HF2 compatible	Port to port dimension, mounting
	pattern, and element design meet
	HF2 automotive specification.
	(Automotive standard)
Drain plug standard	Bowl with drain plug comes
	standard. (No price adder)

Featuring Hy-Pro G7 Dualglass Filter element technology

APPLICATIONS


- Hy-Pro PF2 pressure filters are ideal for protecting control valves and other sensitive components.
- Mobile applications such as waste haulers, cement mixers/pumpers, firetrucks, cranes, man lifts, etc.
- Power unit builders for pressure line.
- General industrial machine tools.
- Paper mill and sawmill.
- Primary metals.
- Power generation applications for speed control circuit.
- Automotive manufacturing machine tools.

PRODUCT SPECIFICATIONS


Dragouro rotingo	4000 pai (207 har) may aparating
Pressure ratings	4000 psi (207 bar) max operating
	12000 psi (638 bar) burst
Flow rate	20 gpm (75 lpm) max
Design safety factor	3:1
Element collapse	code 0: 150 psid (10 bar)
	code 1: 3000 psid (212 bar)
Housing material	Aluminum grade T6061
Fluid compatibility	Compatible with all petroleum,
(ISO 2948)	based oils, HWBF, water glycol,
	oil/water emulsion, and specified
	synthetic fluids with Viton
	or EPR seals (call factory)
Flow fatigue rating	2000 psi (178 bar)
Differential pressure	50 psid (3.5 bar) standard
indicator trigger	
Bypass valve crack	60 psid (4.2 bar) standard
Weight (w/element)	Single length bowl 3.8lb (1.7kg)
	Double length bowl 5.0lb (2.3kg)
Temperature rating	Buna = -40f(-40c) to 225f (107c)
	Viton = $-15f(-26c)$ to $275f(135c)$

PF2 FILTER ASSEMBLY PART NUMBER GUIDE

PF2 FILTER ELEMENT PART NUMBER GUIDE

table 1	element
code	collapse
0	290 psid (20 bar)
1	3000 psid (200 bar)

table 2	element
code	length
4	Single (4"/100mm nom)
8	Double (8"/200mm nom)

table 3	port
code	type
S	SAE-12 threaded
М	Manifold top mount

table 4			
code	filtration rating	media type	series
1M	$\beta 2.5_{[c]} = 1000 \ (\beta 1 = 200)$	G7 Dualglass	20
2M	$\beta 5_{[c]} = 1000 \ (\beta 3 = 200)$	G7 Dualglass	21
3M	$\beta 5_{[c]} = 1000 \ (\beta 3 = 200)$	G7 Dualglass	20
3SF	$\beta 5_{[c]} = 1000 \ (\beta 3 = 200)$	Dynafuzz	20, 21
6M	$\beta 7_{[c]} = 1000 \ (\beta 6 = 200)$	G7 Dualglass	20,21
10SF	$\beta 12_{[c]} = 1000 \ (\beta 12 = 200)$	Dynafuzz	20,21
12M	$\beta 12_{[c]} = 1000 \ (\beta 12 = 200)$	G7 Dualglass	20
15M	$\beta 17_{[c]} = 1000 \ (\beta 15 = 200)$	G7 Dualglass	21
25M	$\beta 22_{[c]} = 1000 \ (\beta 25 = 200)$	G7 Dualglass	20,21
25W	25µ nominal	Stainless mesh	20,21
40W	40µ nominal	Stainless mesh	20,21
74W	74µ nominal	Stainless mesh	20,21
149W	149µ nominal	Stainless mesh	20,21
300W	300μ nominal	Stainless mesh	20,21

table 5	
code	bypass valve
5	60 psid (4.2 bar)
Х	No bypass

table 6	
code	indicator
М	Visual, mechanical
E	Electrical
Х	No indicator port
Z	Port plugged

	table 7	
	code	Seal
	В	Buna
		-40f(-40c) to 225f(107c)
V Viton		Viton
		-15f(-26c) to 275f(135c)

table 8	
code	Special options
V	Vent plug (S port type option only)

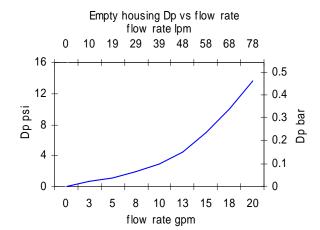
93

PF2 FILTER ASSEMBLY SELECTION AND SIZING GUIDELINES

Effective filter sizing requires consideration of flow rate, viscosity (operating and cold start), fluid type, and degree of filtration. When properly sized bypass, during cold start can be avoided/minimized and optimum element efficiency and life achieved. The filter assembly differential pressure values provided for sizing differ for each media code assume 150 SSU (32cSt) viscosity and 0.86 fluid specific gravity. Use the following steps to identify the correct high pressure filter assembly.

1. Calculate Δp coefficient at both operating and cold start viscosity:

 $\Delta p \text{ Coefficient} = \frac{\text{Actual Operating Viscosity (SSU)}}{150} \times \frac{\text{Actual S.G.}}{0.86}$

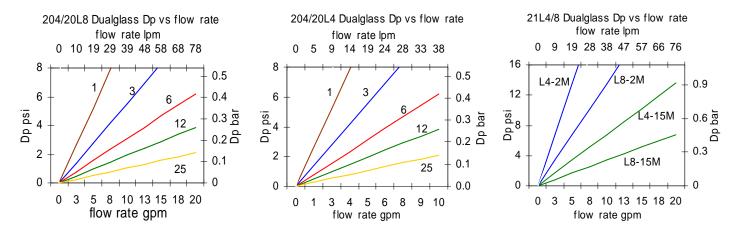

2. Calculate actual clean filter assembly Δp at both operating and cold start viscosity:

Actual assembly clean Δp = Flow rate x Δp Coefficient x Assembly Δp factor (from sizing table)

3. Sizing Recommendations to optimize performance and permit future flexibility:

- To avoid or minimize bypass during cold start actual assembly clean ∆p calculation should be repeated for start-up conditions.
- Actual assembly clean ∆p should not exceed 5 psid at normal operating viscosity.
- If suitable assembly size is approaching the upper limit of the recommended flow rate at the desired degree of filtration consider increasing the assembly to the next larger size if a finer degree of filtration might be preferred in the future. This practice allows the future flexibility to enhance fluid cleanliness without compromising clean ∆p or filter element life.
- Consider increasing the assembly to the next larger size to optimize filter element life and avoid bypass during cold start.
- When using water glycol or other specified synthetics we recommend increasing the filter assembly by 1~2 sizes.

HOUSING and FILTER ELEMENT FLOW vs PRESSURE DROP and EFFICIENCY DATA



Pressure Drop Calculation

Pressure drop curves based on oil viscosity of 150 SSU, and specific gravity = 0.9. Dp across element is proportionally related to viscosity and specific gravity. For new DP use the following conversion formula:

DP element =

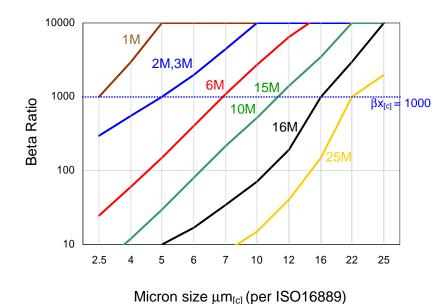
DP curve x Viscosity/150 x SG/0.86

www.filterelement.com

HIGH PERFORMANCE FILTER ELEMENTS — THE HEART OF A FILTER

Dynamic Filter Efficiency (DFE) Testing

Revolutionary test methods assure that DFE rated elements perform true to rating even under demanding variable flow and vibration conditions. Today's industrial and mobile hydraulic circuits require elements that deliver specified cleanliness under ALL circumstances. Wire mesh supports the media to ensure against cyclical flow fatigue, temperature, and chemical resistance failures possible in filter elements with synthetic support mesh. Contact your distributor or Hy-Pro for more information and published articles on DFE testing.

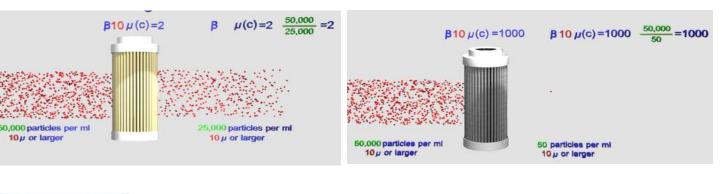

Media Options

Through extensive testing we have developed media choices to handle any application. Options include G7 Dualglass, Dynafuzz (stainless fiber), and Wire mesh (stainless).

Fluid Compatibility

Petroleum based fluids, water glycol, polyol ester, phosphate ester, high water based fluids and many other synthetics. Contact us for seal material selection assistance.

FILTER MEDIA SPECIFICATIONS

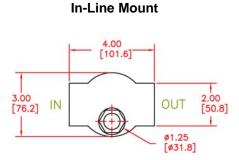


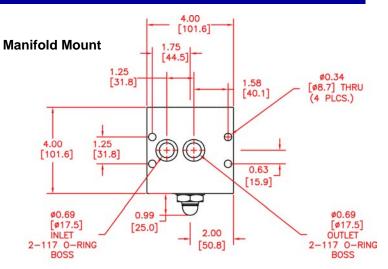
95

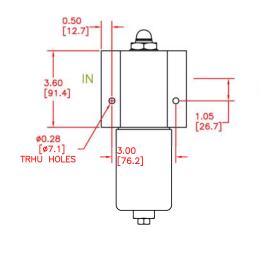
Glass Media Code Filtration Efficiency (Beta Ratio) vs Micron Size

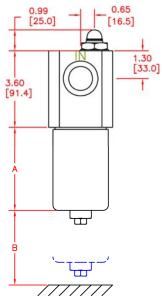
media code	media description
A	G7 Dualglass high performance media combined with water removal scrim. $\beta x_{[c]} = 1000 (\beta x = 200)$
М	G7 Dualglass our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{[c]} = 1000 (\beta x = 200)$
W	Stainless steel wire mesh media $\beta x_{[c]} = 2 (\beta x = 2)$ nominally rated

Typical cellulose media performance






10 µ or large


Hy-Pro G7 Dualglass media performance

INSTALLATION DRAWING

Dim IN, Lb (mm, kg)				
В	3.50 (90)	7.20 (184)		
Weight	3.8 (1,7)	5.0 (2,3)		

SPA	RE F	PART	rs l	IST.

1	Head	P/N	5	Drain plug	P/N
	In-line w/bypass valve, w/indicator port	PF2HLBI		Buna o-ring	PF2DPB
	In-line w/bypass valve No indicator port	PF2HLBX		Viton o-ring	PF2DPV
	In-line No bypass valve, w/indicator port	PF2HLXI		EPR o-ring	PF2DPE
	In-line No bypass valve, No indicator port	PF2HLXX	6	Indicator	
	Top Mainfold w/bypass valve, w/indicator port	PF2HMBI		Visual, Buna o-ring	PFIVB
	Top Maniflod w/bypass valve, No indicator port	PF2HMBX		Visual, Viton o-ring	PFIVV
	Top Manifold No bypass valve, w/indicator port	PF2HMXI		Visual, EPR o-ring	PFIVE
	Top Manifold No bypass valve, No indicator port	PF2HMXX		Electrical, Buna o-ring	PFIEB
2	Element (see Element part number guide)			Electrical, Viton o-ring	PFIEV
3	Bowl seal kit (includes teflon back up ring)			Electrical, EPR o-ring	PFIEE
	Nitrile Buna	PF2BSKB	7	Manifold mount kit (includes 2 o-rings)	
	Viton Fluorocarbon	PF2BSKV		Buna o-ring	PF2SKMB
	EPR	PF2BSKE		Viton o-ring	PF2SKMV
4	Bowl			EPR o-ring	PF2SKME
	Single length w/drain port	PF2B1			
	Double length w/drain port	PF2B2			

PFH FILTER HOUSING

PFH High Pressure In-Line Filter

PRODUCT FEATURES

615 bar, 8700 psi Operating Pressure 450 lpm, 120 gpm Max Flow Rate

APPLICATIONS

PFH high pressure filter assemblies are ideal for protecting sensitive components in hydraulic circuits, and should be located upstream of specific components or directly after the pressure pump (for smaller systems).

- Protect a component that is very sensitive to particulate contamination (ie servo valve) and requires clean pressurized fluid for reliable operation.
- To help meet mill/plant target cleanliness codes and required ISO 4406:1999 cleanliness standards set by hydraulic component manufacturers (warranty).
- To protect a component that is very expensive where minimizing the risk of failure and replacement cost justifies the cost of filtration.
- To protect a component or system that can affect overall mill productivity and cause downtime.

PRODUCT SPECIFICATIONS

	-
Materials	
Head	Cast steel
Bowl	Cold forged steel
Seals	Buna or Viton
Media options	G7 Dualglass, Stainless mesh
Interior coating	Phosphate coating
Exterior coating	Powder coated
ISO standards	
ISO 2941	Collapse and burst resistance
ISO 2942	Fabrication and integrity test
ISO 2943	Material compatibility with fluids
ISO 3724	Flow fatigue test
ISO 3968	Pressure drop vs flow rate
ISO 16889	Multi-pass filter performance
DIN 24550	Nominal pressure rating
Temperature rating	Buna -40f(-40c) to 225f(107c)
	Viton -15f(-26c) to 275f(135c)
Fluid compatibility	Biodegradable and mineral based
	fluids. For high water based or
	specified synthetics consult factory

DFE rated elements	G7 Dualglass media filter	Ν
(Dynamic Filter	elements are DFE rated to assure	
Efficiency)	performance even when exposed	
	to the toughest hydraulic systems	
	(See DFE literature for details)	
Circumferential	Circumferential seal on the bowl	
o-ring bowl seal	eliminates leaking and weeping.	
Low housing	Unique internal flow paths provide	15
pressure drop	low resistance to flow.	
	(Low pressure drop)	
Coreless elements	PFH419 housings (with bypass	
	valve) can be ordered with Hy-Pro	
	coreless filter element for easy	
	disposal (crush or incinerate).	
		Т
Differential indicator	Available with visual, electrical, or	
	electrical with LED (visual signal)	F
	differential indicators.	

97

HY-PRO

FILTRATION

PFH FILTER ASSEMBLY SIZING & OPERATING PRESSURE GUIDELINES

Media	Bowl	Max flow rate*	_	Assembly ∆p factor*	Max operating
code	length	gpm (lpm)	Port size	psid / gpm	Pressure, fatigue rating
3M		5.5 (20.4)		2.751	psi (bar)
6M	4	6.2 (23.1)		2.433	4570 psi, 315 bar
10M	(single)	9.6 (36.1)	3/4"	1.557	107 pressure cycles
25M	1 F	14.4 (54.0)		1.042	6500 psi, 450 bar
25W	1 F	20.8 (78.1)		0.72	104 pressure cycles
3M		8.9 (33.5)		1.68	psi (bar)
6M	8	12.4 (46.5)		1.21	4570 psi, 315 bar
10M	(double)	15.3 (57.4)	3/4"	0.98	107 pressure cycles
25M	1 F	22.0 (82.5)		0.682	6500 psi, 450 bar
25W	1 [27.3 (102.3)		0.55	104 pressure cycles

PFH131 Series

*Max flow rate and Δp factor assumes v = 150 sus, 32 Centistokes. See Δp viscosity conversion formula for viscosity

PFH152 Series					
Media code	Bowl length	Max flow rate* gpm (lpm)	Port size	Assembly ∆p factor* psid / gpm	Max operating Pressure, fatigue rating
3M		9.4 (35.4)		1.59	psi (bar)
6M	4	11.7 (43.9)	_	1.28	4570 psi, 315 bar
10M	(single)	17.8 (66.8)	1"	0.842	107 pressure cycles
25M		24.3 (91.0)		0.618	6500 psi, 450 bar
25W		36.6 (137.2)	_	0.41	104 pressure cycles
3M		16.8 (63.0)		0.893	psi (bar)
6M	8	20.5 (77.1)		0.73	4570 psi, 315 bar
10M	(double)	27.4 (102.6)	1"	0.548	107 pressure cycles
25M	1	33.9 (127.3)	1	0.442	6500 psi, 450 bar
25W	1	48.9 (183.2)	1	0.307	104 pressure cycles

*Max flow rate and Δp factor assumes v = 150 sus, 32 Centistokes. See Δp viscosity conversion formula for viscosity

PFH419 Series

Media	Bowl	Max flow rate*		Assembly ∆p factor*	Max operating
code	length	gpm (lpm)	Port size	psid / gpm	Pressure, fatigue rating
ЗM		19 (71.2)		0.809	psi (bar)
6M	4	23 (86.2)	SAE-20	0.627	6090 psi, 420 bar
10M	(single)	26 (97.5)	1 1/4"	0.46	107 pressure cycles
25M	-	32 (120)	_	0.335	8700 psi, 615 bar
25W	-1	45 (168.7)		0.185	104 pressure cycles
3M		37 (138.7)		0.52	psi (bar)
6M	8	42 (157.5)	SAE-20	0.383	6090 psi, 420 bar
10M	(double)	50 (187.5)	1 1/4"	0.28	107 pressure cycles
25M		58 (217.5)	_	0.185	8700 psi, 615 bar
25W	-	72 (270)		0.119	104 pressure cycles
3M		60 (225)		0.42	psi (bar)
6M	13	66 (247.5)	SAE-20	0.308	6090 psi, 420 bar
10M	(triple)	74 (277.5)	1 1/4"	0.175	107 pressure cycles
25M	-1	90 (337.5)	SAE-24	0.146	8700 psi, 615 bar
25W	-1 -	118 (442.5)	1 1/2"	0.105	104 pressure cycles

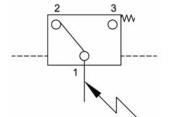
*Max flow rate and Δp factor assumes v = 150 sus, 32 Centistokes. See Δp viscosity conversion formula for viscosity

PFH FILTER ASSEMBLY SIZING & OPERATING PRESSURE GUIDELINES

Effective filter sizing requires consideration of flow rate, viscosity (operating and cold start), fluid type and degree of filtration. When properly sized, bypass during cold start can be avoided/minimized and optimum element efficiency and life achieved. The filter assembly differential pressure values provided for sizing differ for each media code, and assume 150 SSU (32 cSt) viscosity and 0.86 fluid specific gravity. Use the following steps to identify the correct high pressure filter assembly.

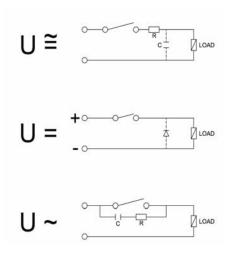
1. Calculate Δp coefficient at both operating and cold start viscosity:

 $\Delta p \text{ Coefficient } = \frac{\text{Actual Operating Viscosity (SSU)}}{150} \times \frac{\text{Actual S.G.}}{0.86}$

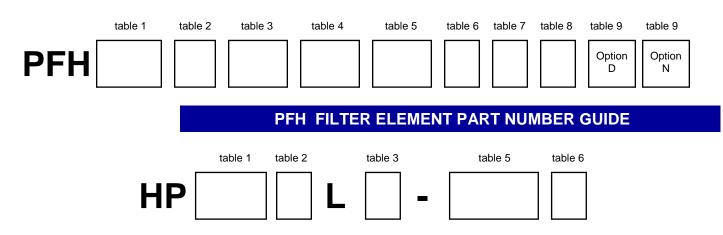

2. Calculate actual clean filter assembly Δp at both operating and cold start viscosity:

Actual assembly clean Δp = Flow rate x Δp Coefficient x Assembly Δp factor (from sizing table)

3. Sizing Recommendations to optimize performance and permit future flexibility:


- To avoid or minimize bypass during cold start the actual assembly clean ∆p calculation should be repeated for start-up conditions if cold starts are frequent.
- Actual assembly clean ∆p should not exceed 15 psid at normal operating viscosity.
- If suitable assembly size is approaching the upper limit of the recommended flow rate at the desired degree of filtration consider increasing the assembly to the next larger size if a finer degree of filtration might be preferred in the future. This practice allows the future flexibility to enhance fluid cleanliness without compromising clean △p or filter element life.
- Once a suitable filter assembly size is determined consider increasing the assembly to the next larger size to optimize filter element life and avoid bypass during cold start.
- When using water glycol or other specified synthetics we recommend increasing the filter assembly by 1~2 sizes.
- High viscosity fluid (ie gear lube ISO 220) will typically display very high viscosity as the temperature drops below 100f. For such applications avoiding bypass during start-up might not be possible.

ELECTRICAL + LED, ELECTRICAL DIFFERENTIAL PRESSURE INDICATOR INFORMATION



- Indication pressure 73 psid (5.18 bar)
- Switching voltage max 120 V AC / 175 V DC
- Switching current max 0,17 A AC / 0,25 A DC
- Switching power max 3,5 VA AC / 5 W DC
- Contact type Change-over
- Electrical protection IP 65
- Current limiter for DC and AC voltage. If loads are connected over long distances a protective resistor should be connected in series in order to limit the current.
- Spark suppression in DC applications. The contacts of reed switches open very
 fast which causes voltage peaks to be induced when switching off inductive loads
 (relays, lifting magnets, solenoids). The self-induction currents are short-circuited
 by connecting a diode in parallel to the inductive load
- Spark suppression in AC applications. In AC applications a diode connected in parallel to the load is not sufficient. RC elements should be connected in parallel to the reed switch.

PFH FILTER ASSEMBLY PART NUMBER GUIDE

Bold denotes standard product option. Non-standard options are subject to longer than standard lead time

table 3

code

4

8

13*

element

length

single

double

triple

table 1	Series and max
code	operating pressure
131	6000 psi, 450 bar*
152	6000 psi, 450 bar*
419	8700 psi, 600 bar*

table 2	element
code	collapse
Ν	450 psid
Н	3000 psid
C*	250 psid
*coreless	element PFH419 only

*See sizing / pressure guidelines

table 5	
code	Media selection
1M	$\beta 2.5_{[c]} = 1000, \beta 1 = 200$
3M	$\beta 5_{[c]} = 1000, \ \beta 3 = 200$
6M	$\beta 7_{[c]} = 1000, \beta 6 = 200$
10M	$\beta 12_{[c]} = 1000, \ \beta 12 = 200$
25M	$\beta 22_{[c]} = 1000, \ \beta 25 = 200$
25W	25u nominal mesh media
40W	40u nominal mesh media
74W	74u nominal mesh media
149W	149u nominal mesh media

table 6	
code	Seal
В	Buna
	-40f(-40c) to 225f(107
V	Viton
	-15f(-26c) to 275f(135

table 7			
code	Bypass valve		
7	102 psid bypass		
Х*	No bypass		
*No bypass "X" option only recommended with "H" element collapse rating (table 2)			

B4 G1 1/4 BSPP threaded F1 SAE-20 Flange (Code 62) S1 SAE-8 threaded S2 SAE-12 threaded S3 SAE-16 threaded S4 SAE-20 threaded S5 SAE-24 threaded	*DELI440 corice colu			
S1SAE-8 threadedS2SAE-12 threadedS3SAE-16 threadedS4SAE-20 threadedS5SAE-24 threaded	*PFH419 series only		B4	G1 1/4 BSPP threaded
s2SAE-12 threadedna225f(107c)cnS5SAE-24 threaded			F1	SAE-20 Flange (Code 62)
alS3SAE-16 threadedna225f(107c)S4SAE-20 threadedS5SAE-24 threaded		ľ	S1	SAE-8 threaded
S3 SAE-16 threaded 225f(107c) S4 SAE-20 threaded S5 SAE-24 threaded	al		S2	SAE-12 threaded
S4 SAE-20 threaded 225f(107c) S5 S5 SAE-24 threaded			S3	SAE-16 threaded
S5 SAE-24 threaded)7c)	S4	SAE-20 threaded
	、 ,		S5	SAE-24 threaded
	275f(135c)			

table 4

code

B1

B2

B3

Port type

G 1/2 BSPP threaded

G 3/4 BSPP threaded

G1 BSPP threaded

table 8	
code	∆p indicator
v	Visual, mechanical
Е	Electrical
L	Eletrical + LED visual
Z	Indicator port plugged

table 9	Special options
code	(not required)
D	Bowl drain w/plug
N	Nickel coated for high straight water applications (call factory)

series

availability

PFH131

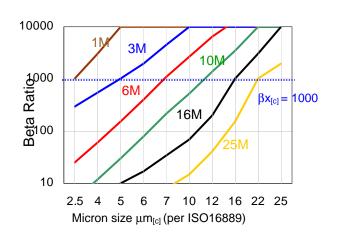
PFH131, PFH152

PFH152

PFH419

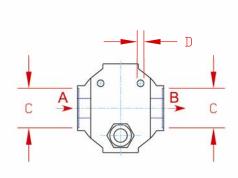
PFH419 PFH131

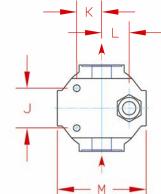
PFH131, PFH152

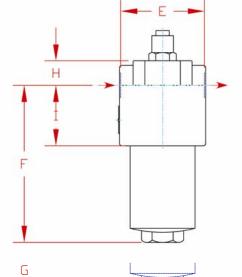

PFH152

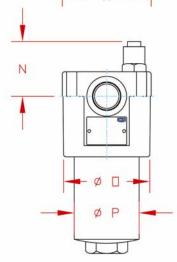
PFH419

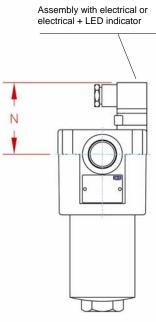
PFH419


FILTER MEDIA SELECTION GUIDE


media code	media description
A	G7 Dualglass high performance media combined With water removal scrim. $\beta x_{[c]} = 1000 (\beta x = 200)$
М	G7 Dualglass our latest generation of DFE rated, high performance glass media for hydraulic & lubrication flulids. $\beta x_{[c]} = 1000 (\beta x = 200)$
W	Stainless steel wire mesh media $\beta x_{[c]} = 2 \ (\beta x = 2)$




www.filterelement.com

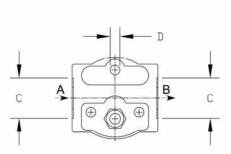

PFH131 INSTALLATION DRAWING AND SPARE PARTS LIST

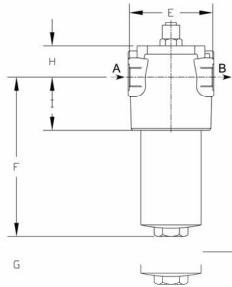
Minimum required clearance for element removal

	DELLAGATA	
	PFH131*4	PFH131*8
	IN (mm)	IN (mm)
A/B	G 1/2, G3/4, SAE-8,	G 1/2, G3/4, SAE-8,
	SAE-12 thread	SAE-12 thread
С	1.653 (41,5)	1.653 (41,5)
D	M8 x 0.472 (11,98) depth	M8 x 0.472 (11,98) depth
E	3.310 (84,08)	3.310 (84,08)
F	6.225 (158,12)	10.008 (254,2)
G	2.167 (55,04)	2.167 (55,04)
н	0.965 (24,51)	0.965 (24,51)
I	2.403 (61,03)	2.403 (61,03)
J	1.576 (40,03)	1.576 (40,03)
к	0.985 (25,02)	0.985 (25,02)
L	1.084 (27,53)	1.084 (27,53)
М	3.507 (89,07)	3.507 (89,07)
N	Optical 2.167 (55,04)	Optical 2.167 (55,04)
	Electrical 2.837 (72,05)	Electrical 2.837 (72,05)
0	3.349 (85,06)	3.349 (85,06)

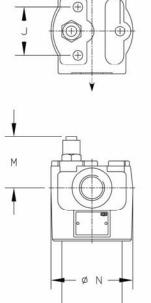
///////

1	Element (see Element part number guide)	Part number
2	Bowl Seal kit	
	Nitrile NBR	PFH131SKB
	Fluorocarbon	PFH131SKV
3	Bowl	
	Single length	PFB131
	Single length with drain port	PFB131D
	Double length	PFB132
	Double length with drain port	PFB132D
4	Indicator	
	Visual indicator, Buna o-ring	PFHIVB
	Visual, Viton o-ring	PFHIVV
	Electrical, Buna o-ring	PFHIEB
	Electrical, Viton o-ring	PFHIEV
	Electrical + LED visual, Buna o-ring	PFIHILB
	Electrical + LED visual, Viton o-ring	PFHILV

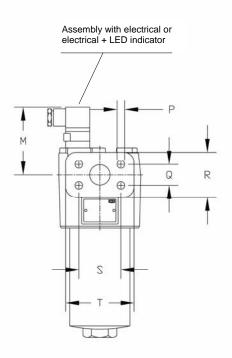

	PFH131*4	PFH131*8
	Lbs (kg)	Lbs (kg)
Weight	8.6 (3.90)	11.3 (5.13)



PFH152 INSTALLATION DRAWING AND SPARE PARTS LIST


L

К –


4

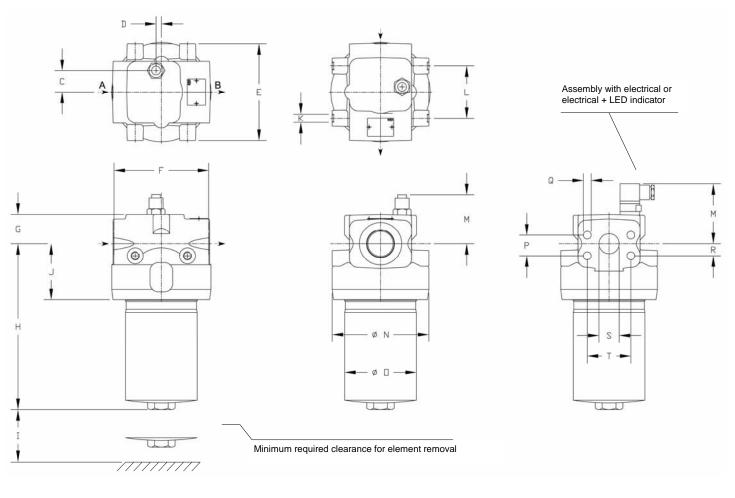
• Ø 🗆 🕨

U

J

Minimum required clearance for element removal

	PFH152*4	PFH152*8
	IN (mm)	IN (mm)
A/B	G3/4, G1, SAE-12, SAE-16	G3/4, G1, SAE-12, SAE-16
	thread, SAE-16 Code 62	thread, SAE-16 Code 62
С	1.950 (49,53)	1.950 (49,53)
D	M10 X 0.472 (11,98) depth	M10 X 0.472 (11,98) depth
Е	4.094 (103,99)	4.094 (103,99)
F	8.819 (224,0)	11.220 (284,99)
G	2.756 (70,00)	2.756 (70,00)
Н	2.953 (75,00)	2.953 (75,00)
Ι	2.598 (65,99)	2.598 (65,99)
J	2.362 (59,99)	2.362 (59,99)
κ	0.689 (17,50)	0.689 (17,50)
L	1.378 (35,00)	1.378 (35,00)
М	Optical 2.677 (67,99)	Optical 2.677 (67,99)
	Electrical 3.327 (84,51)	Electrical 3.327 (84,51)
Ν	4.016 (102,01)	4.016 (102,01)
0	2.953 (75,00)	2.953 (75,00)
Р	Thread ?? (??)	Thread ?? (??)
Q	1.093 (27,76)	1.093 (27,76)
R	2.095 (53,21)	2.095 (53,21)
S	2.250 (57,15)	2.250 (57,15)
Т	3.325 (84,45)	3.325 (84,45)



1	Element (see Element part number guide)	Part number
2	Bowl Seal kit	
	Buna	PFH152SKB
	Viton	PFH152SKV
3	Bowl	
	Single length	PFB1521
	Single length with drain port	PFB1521D
	Double length	PFB1522
	Double length with drain port	PFB1522D
4	Indicator	
	Visual indicator, Buna o-ring	PFH152IVB
	Visual, Viton o-ring	PFH152IVV
	Electrical, Buna o-ring	PFH152IEB
	Electrical, Viton o-ring	PFH152IEV
	Electrical + LED visual, Buna o-ring	PFH152ILB
	Electrical + LED visual, Viton o-ring	PFH152ILV

	PFH152*4	PFH152*8
Lbs (kg)		Lbs (kg)
Weight	15.5 (7.04)	18.5 (8.40)

PFH419 INSTALLATION DRAWING AND SPARE PARTS LIST

	PFH419*4	PFH419*8	PFH419*13
	IN (mm)	IN (mm)	IN (mm)
A/B	G1 1/4, SAE-20, SAE-24		
	thread SAE-20 code 62	thread SAE-20 code 62	thread SAE-20 code 62
С	1.30 (33,02)	1.30 (33,02)	1.30 (33,02)
D	0.32 (8,12)	0.32 (8,12)	0.32 (8,12)
Е	5.83 (148,08)	5.83 (148,08)	5.83 (148,08)
F	5.71 (145,03)	5.71 (145,03)	5.71 (145,03)
G	1.77 (44,95)	1.77 (44,95)	1.77 (44,95)
Н	10.05 (255,27)	12.57 (319,28)	16.55 (420,37)
I	3.15 (80,01)	3.15 (80,01)	3.15 (80,01)
J	3.39 (86,11)	3.39 (86,11)	3.39 (86,11)
Κ	M12 x 18mm depth	M12 x 18mm depth	M12 x 18mm depth
L	3.15 (80,01)	3.15 (80,01)	3.15 (80,01)
М	Optical 2.96 (75,18) Electrical 3.62 (91,95)	Optical 2.96 (75,18) Electrical 3.62 (91,95)	Optical 2.96 (75,18) Electrical 3.62 (91,95)
Ν	5.99 (152,15)	5.99 (152,15)	5.99 (152,15)
0	4.29 (108,96)	4.29 (108,96)	4.29 (108,96)
Ρ	1.25 (31,75)	1.25 (31,75)	1.25 (31,75)
Q	M14 x 22mm depth	M14 x 22mm depth	M14 x 22mm depth
R	0.73 (18,54)	0.73 (18,54)	0.73 (18,54)
S	1.22 (30,99)	1.22 (30,99)	1.22 (30,99)
Т	2.63 (66,80)	2.63 (66,80)	2.63 (66,80)

1	Element		See e	element p/n
2	Bowl Seal kit			
	Buna			H419SKB
	Viton			H419SKV
3	Bowl			
	Single length		Р	FB4191
	Single length w/drair	n port	PF	B4191D
	Double length		Р	FB4192
	Double length w/drai	n port	PF	B4192D
	Triple length		PFB4193	
	Triple length w/drain	port	PFB4193D	
4	Indicator			
	Visual indicator, Bun	а	PFHIVB	
	Visual, Viton		PFHIVV	
	Electrical, Buna seal		PFHIEB	
	Electrical, Viton		PFHIEV	
	Electrical + LED, Bui	na	PFHILB	
	Electrical + LED, Viton		PFHILV	
	DELLAA	551	440*0	DELLANA
	PFH419*4		419*8	PFH419*13
	Lbs (kg)	Lbs	(kg)	Lbs (kg)

35.5 (16.12) 39.0 (17.71) 45.4 (20.61)

Weight

PFHB FILTER ASSEMBLY

High Pressure Full Flow Bi-Directional Filter

450 bar, 6225 psi Operating Pressure 300 lpm, 79 gpm Max Flow Rate Bi-Directional Full Flow Filtration

APPLICATIONS

PFB high pressure filter assemblies are designed for applications where flow direction changes and fluid must be filtered full flow in both directions.

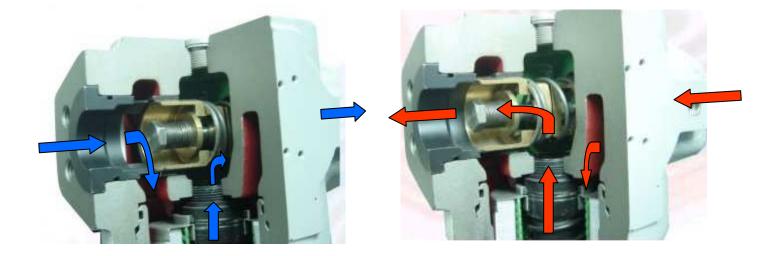
- To protect a component that is very sensitive to particulate contamination (ie servo valve) and requires clean pressurized fluid for reliable operation.
- To help meet mill/plant target cleanliness codes and required ISO 4406 cleanliness standards set by hydraulic component manufacturers (warranty).
- To protect a component that is very expensive where minimizing the risk of failure and replacement cost justifies the cost of filtration.
- Hydrostatic applications.

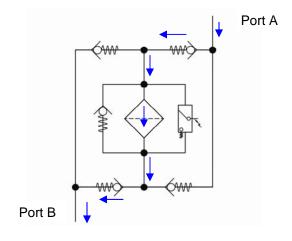
PF	20	DU	СТ	FE/	ATU	RES	

DFE rated elements	G7 Dualglass media filter	
	5	
(Dynamic Filter	elements are DFE rated to assure	
Efficiency)	performance even when exposed	
	to the toughest hydraulic systems	
	(See DFE literature for details)	
Circumferential	Circumferential seal on the bowl	
o-ring bowl seal	eliminates leaking and weeping.	
Low housing	Unique internal flow paths provide	
pressure drop	low resistance to flow.	
	(Low pressure drop)	
Coreless elements	PFH419 housings (with bypass	
	valve) can be ordered with Hy-Pro	
	coreless filter element for easy	
	disposal (crush or incinerate).	
Differential indicator	Available with visual, electrical, or	
	electrical with LED (visual signal)	
	differential indicators.	

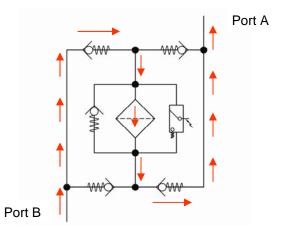
PRODUCT SPECIFICATIONS

	1
Materials	
Head	Cast steel
Bowl	Extruded steel
Seals	Buna or Viton
Media options	G7 Dualglass, Stainless mesh
Interior coating	Phosphate coating
Exterior coating	Power paint coated
ISO standards	
ISO 2941	Collapse and burst resistance
ISO 2942	Fabrication and integrity test
ISO 2943	Material compatibility with fluids
ISO 3724	Flow fatigue test
ISO 3968	Pressure drop vs flow rate
ISO 16889	Multi-pass filter performance
DIN 24550	Nominal pressure rating
Temperature rating	Buna -40f(-40c) to 225f(107c)
	Viton -15f(-26c) to 275f(135c)
Fluid compatibility	Biodegradable and mineral based
	fluids. For high water based or
	specified synthetics consult factory


FILTRATION


PFHB FILTER ASSEMBLY SIZING & OPERATING PRESSURE GUIDELINES

Media	Bowl code	Max flow rate*		Assembly ∆p factor*	Max operating
code	Length	gpm (lpm)	Port size	psid / gpm	Pressure, fatigue rating
3M		37 (138.7)		0.52	psi (bar)
6M	8	42 (157.5)	SAE-20	0.383	6090 psi, 420 bar
10M	(double)	50 (187.5)	1 1/4" Flange	0.28	10 ⁷ pressure cycles
25M		58 (217.5)	Code 62	0.185	8700 psi, 615 bar
**W (mesh)		72 (270)		0.119	10 ⁴ pressure cycles
ЗM		60 (225)		0.42	psi (bar)
6M	13	66 (247.5)	SAE-24	0.308	6090 psi, 420 bar
10M	(triple)	74 (277.5)	1 1/2" Flange	0.175	10 ⁷ pressure cycles
25M		90 (337.5)	Code 62	0.146	8700 psi, 615 bar
**W (mesh)		118 (442.5)		0.105	10 ⁴ pressure cycles


PFHB419 Series

*Max flow rate and Δp factor assumes v = 150 sus, 32 Centistokes. See Δp viscosity conversion formula for viscosity

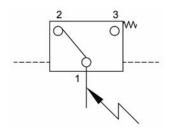
105

PFHB FILTER ASSEMBLY SIZING & OPERATING PRESSURE GUIDELINES

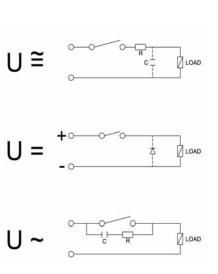
Effective filter sizing requires consideration of flow rate, viscosity (operating and cold start), fluid type and degree of filtration. When properly sized bypass during cold start can be avoided/minimized and optimum element efficiency and life achieved. The filter assembly differential pressure values provided for sizing differ for each media code, and assume 150 SSU (32cSt) viscosity and 0.86 fluid specific gravity. Use the following steps to identify the correct high pressure filter assembly.

1. Calculate Δp coefficient at both operating and cold start viscosity:

		Actual Operating Viscosity (SSU)		Actual S.G.
∆p Coefficient	= -		Х	
		150		0.86


2. Calculate actual clean filter assembly Δp at both operating and cold start viscosity:

Actual assembly clean Δp = Flow rate x Δp Coefficient x Assembly Δp factor (from sizing table)


3. Sizing Recommendations to optimize performance and permit future flexibility:

- To avoid or minimize bypass during cold start the actual assembly clean ∆p calculation should be repeated for start-up conditions if cold starts are frequent.
- Actual assembly clean Δp should not exceed 15 psid at normal operating viscosity.
- If suitable assembly size is approaching the upper limit of the recommended flow rate at the desired degree of filtration consider increasing the assembly to the next larger size if a finer degree of filtration might be preferred in the future. This practice allows the future flexibility to enhance fluid cleanliness without compromising clean Δp or filter element life.
- Once a suitable filter assembly size is determined consider increasing the assembly to the next larger size to optimize filter element life and avoid bypass during cold start.
- When using water glycol or other specified synthetics we recommend increasing the filter assembly by 1~2 sizes.
- High viscosity fluid (ie gear lube ISO 220) will typically display very high viscosity as the temperature drops below 100f. For such applications avoiding bypass during start-up might not be possible.

ELECTRICAL + LED, ELECTRICAL DIFFERENTIAL PRESSURE INDICATOR INFORMATION

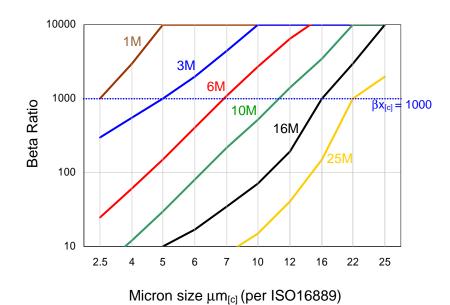
- Indication pressure 73 psid (5.18 bar)
- Switching voltage max 120 V AC / 175 V DC
- Switching current max 0,17 A AC / 0,25 A DC
- Switching power max 3,5 VA AC / 5 W DC
- Contact type Change-over
- Electrical protection IP 65
- Current limiter for DC and AC voltage. If loads are connected over long distances a protective resistor should be connected in series in order to limit the current.
- Spark suppression in DC applications. The contacts of reed switches open very fast which causes voltage peaks to be induced when switching off inductive loads (relays, lifting magnets, solenoids). The self-induction currents are short-circuited by connecting a diode in parallel to the inductive load
- Spark suppression in AC applications. In AC applications a diode connected in parallel to the load is not sufficient. RC elements should be connected in parallel to the reed switch.

FILTER MEDIA ... THE HEART OF A FILTER

Dynamic Filter Efficiency (DFE) Testing

Revolutionary test methods assure that DFE rated elements perform true to rating even under demanding variable flow and vibration conditions. Today's industrial and mobile hydraulic circuits require elements that deliver specified cleanliness under ALL circumstances. Wire mesh supports the media to ensure against cyclical flow fatigue, temperature, and chemical resistance failures possible in filters with synthetic support mesh. Contact your distributor or Hy-Pro for more information and published articles on DFE testing.

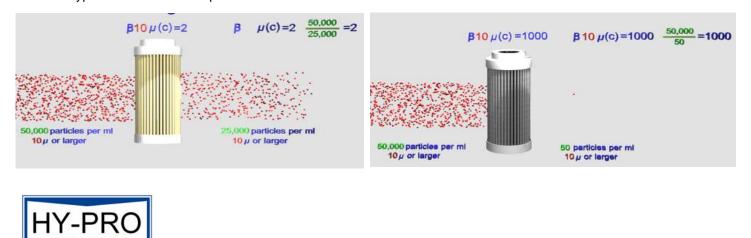
Media Options


Through extensive testing we have developed media choices to handle any application. Options include G7 Dualglass, G7 Dualglass + Water Removal and Stainless steel wire mesh.

Fluid Compatibility

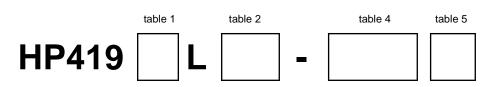
Petroleum based fluids, water glycol, polyol ester, phosphate ester, High water based fluids, and many other synthetics. Contact us for seal material selection assistance.

FILTER MEDIA SPECIFICATIONS


Glass Media Code Filtration Efficiency (Beta Ratio) vs Micron Size (testing per ISO16889 multipass test)

media	media
code	description
A	G7 Dualglass high performance media combined with water removal scrim. $\beta x_{[c]} = 1000 \ (\beta x = 200)$
М	G7 Dualglass our latest generation of DFE rated, high performance glass media for hydraulic & lubrication fluids. $\beta x_{[c]} = 1000 (\beta x = 200)$
W	Stainless steel wire mesh media $\beta x_{[c]} = 2 \ (\beta x = 2)$ nominally rated

Typical cellulose media performance


Hy-Pro G7 Dualglass media performance

PFHB FILTER ASSEMBLY PART NUMBER GUIDE

	table 1	table 2	table 3	table 4	table 5	table 6	table 7	table 8	table 8
PFHB								Option D	Option N

PFHB FILTER ELEMENT PART NUMBER GUIDE

Bold denotes standard product option. Non-standard options are subject to longer than standard lead time

table 1	element		
code	collapse		
Ν	450 psid		
Н	3000 psid		
C*	250 psid		
*coreless element			

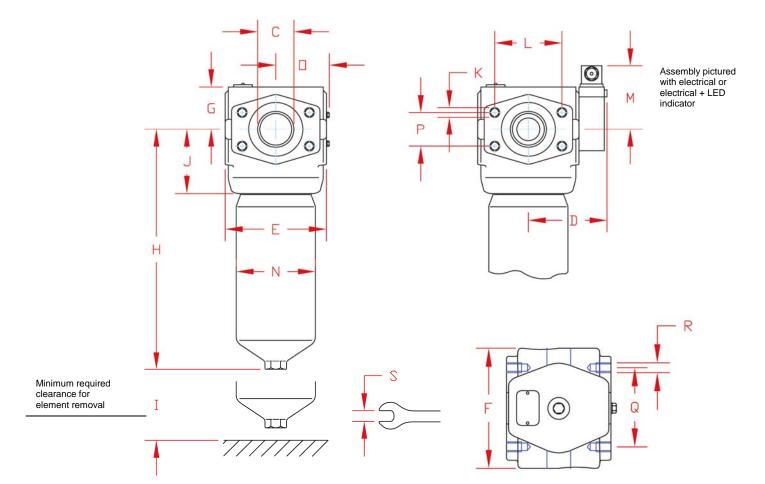
table 4	
code	Media selection
1M	$\beta 2.5_{[c]} = 1000, \beta 1 = 200$
3M	$\beta 5_{[c]} = 1000, \beta 3 = 200$
6M	$\beta 7_{[c]} = 1000, \beta 6 = 200$
10M	$\beta 12_{[c]} = 1000, \ \beta 12 = 200$
25M	$\beta 22_{[c]} = 1000, \ \beta 25 = 200$
25W	25u nominal mesh media
40W	40u nominal mesh media
74W	74u nominal mesh media
149W	149u nominal mesh media

table 2	element
code	length
8	double
13	triple

table 5	
code	Seal
В	Buna
	-40f(-40c) to 225f(107c)
V	Viton
	-15f(-26c) to 275f(135c)

table 7	
code	∆p indicator
V	Visual, mechanical
E	Electrical
L	Eletrical + LED visual
Z	Indicator port plugged

table 3	
code	port option
F1	SAE-20 Flange (Code 62)
F2	SAE-24 Flange (Code 62)


table 6	
code	Bypass valve
7	102 psid bypass
Х*	No bypass

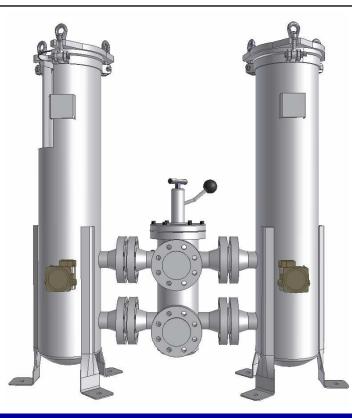
*No bypass "X" option only recommended with "H" element collapse rating (table 2)

table 8	Special options
code	(not required)
D	Bowl drain w/plug
N	Nickel coated for high straight water applications (call factory)

PFHB419 INSTALLATION DRAWING AND SPARE PARTS LIST

	PFHB419*8	PFHB419*13
	IN (mm)	IN (mm)
A/B	SAE-20, SAE-24 code 62 flange	SAE-20, SAE-24 code 62 flange
С	1.24 (31,49)	1.24 (31,49)
D	4.02 (102,10)	4.02 (102,10)
E	5.44 (138,17)	5.44 (138,17)
F	6.15 (156,21)	6.15 (156,21)
G	2.29 (58,16)	2.29 (58,16)
Н	12.92 (328,17)	16.86 (428,24)
I	3.15 (80,01)	3.15 (80,01)
J	3.45 (87,63)	3.45 (87,63)
К	F1: M14 x 22mm depth F2: M16 x 24mm depth	F1: M14 x 22mm depth F2: M16 x 24mm depth
L	F1 port: 2.63 (66,80) F2 port: 3.12 (79,25)	F1 port: 2.63 (66,80) F2 port: 3.12 (79,25)
М	Optical 2.96 (75,18) Electrical 3.43 (87,12)	Optical 2.96 (75,18) Electrical 3.43 (87,12)
N	4.26 (108,2)	4.26 (108,2)
0	2.88 (73,15)	2.88 (73,15)
Р	F1 port: 1.25 (31,75) F2 port: 1.44 (36,57)	F1 port: 1.25 (31,75) F2 port: 1.44 (36,57)
Q	3.94 (100,07)	3.94 (100,07)
R	M12 x 0.71(18,0) depth	M12 x 0.71(18,0) depth
S	1.26 (32,00)	1.26 (32,00)

		PFHB419*8		PFH419*13
		lbs (kg)		lbs (kg)
w	eight	45 (19,98)		50 (22,70)
1	Eleme	nt		See element p/n guide
2	Bowl S	Seal kit		
	Nitrile	NBR		PFHB419SKB
	Fluoro	carbon		PFHB419SKV
3	Bowl			
	Single	length		PFB4191
	Single	length w/drain port		PFB4191D
	Double length			PFB4192
	Double length w/drain port			PFB4192D
	Triple length			PFB4193
	Triple length w/drain port			PFB4193D
4	Indica	tor		
	Visual	indicator, Buna seal		PFHIVB
	Visual, Viton seal			PFHIVV
	Electrical, Buna seal			PFHIEB
	Electrical, Viton seal			PFHIEV
	Electrical + LED, Nitrile seal			PFHILB
	Electrical + LED, Fluoro seal			PFHILV


FILTER ASSEMBLIES DUPLEX

Low Pressure High Flow Low Pressure In-Line High Pressure In-Line

> 12955 Ford Drive. Fishers, IN 46038 www.filterelement.com ph 317.849.3535, fx 317.849.9201

DLF/LFM - High Flow Duplex Assemblies

Flow rates to 560 lpm, 150 gpm / DLFM flow rate to 16875 lpm, 4500 gpm

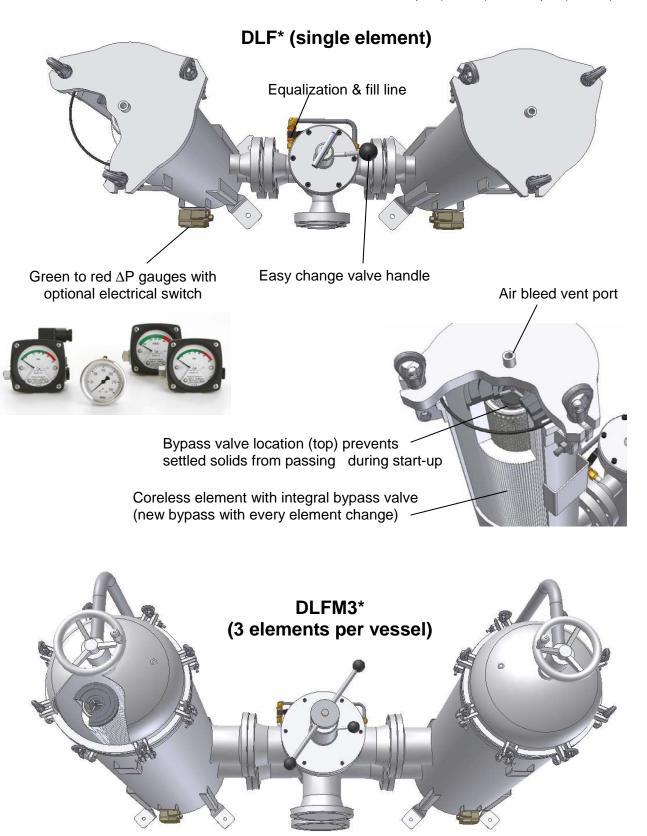
TYPICAL APPLICATIONS

- Uptime critical & continuous operations
- Pulp and Paper
- Hydraulic and Lubrication oil
- Fuel and Fuel oil
- Rolling mill oil
- Processing liquids
- Bulk oil handling Transfer and clean up
- Off-line systems and flushing
- Power generation
- Primary metals
- Mobile flushing systems
- Particulate and water removal
- Transfer line machining coolants
- Large gearbox filtration
- High flow Return-line filtration

PRODUCT SPECIFICATIONS & FEATURES

Max Flow Rate Visc: 150 SUS, 32 cSt	Recommended Series
150 gpm (560 lpm)	LF Double length
4500 gpm (16875 lpm)	DLFM multiple element series
	(call for sizing assistance)
Operating Pressure	Standard 150 psi (10 bar)
	Available up to 450 psi (30 bar)
Pressure Indicators	
Up to 250 psi Operating	Differential pressure indicator
	(dual pressure gauges available)
450 psi and higher	Differential pressure
	Indicator required
Maximum Temperature	Standard 250°F
	Call for high temperature specs

ASME U & UM CODE REQUIREMENTS


Standard vessels are manufactured to ASME code standards, but not certified. ASME U and UM code certification is available as an option. See table 11 under the duplex assembly housing selection ordering detail.

- True 6-way transfer valve allows change over with one valve.
- Integrated pressure equalization and fill line.
- Carbon steel construction standard (304 stainless steel available).
- Duplexing option available for continuous filtration during filter element change-out.
- HP106 and HP107 element series have integral bypass valve (new bypass every time element is changed avoids bypass failure).
- Easy to service swing-lid design with eye nuts assures no lost hardware, hydraulic lift option available.
- Marine grade epoxy exterior finish for non-stainless steel assemblies
- Features Hy-Pro coreless element design with positive o-ring seals
- High differential pressure valve transfer capabilities.
- Drain and cleanout port allows for quick draining and easy access for sump cleanout.
- Hy-Pro Dualglass filter element media technology validated per ISO16889 multipass and DFE (modified ISO16889) industry leading multipass testing.

Top loading housing minimizes mess

No tools required for cover removal 150psi (10 bar) & 250 psi (17 bar)

DLF & DLFM DUPLEX FILTER ASSEMBLY SELECTION AND SIZING GUIDELINES

Effective filter sizing requires consideration of flow rate, viscosity (operating and cold start), fluid type and degree of filtration. When properly sized, bypass during cold start can be avoided/minimized and optimum element efficiency and life achieved. The filter assembly differential pressure values provided for sizing differ for each media code, and assume 150 SSU (32Cts) viscosity and 0.86 fluid specific gravity. Use the following steps to identify the correct high pressure filter assembly.

1. Calculate Δp coefficient at both operating and cold start viscosity:

		Actual Operating Viscosity (SSU)		Actual S.G.
∆p Coefficient	= -		Х	······
		150		0.86

2. Calculate actual clean filter assembly Δp at both operating and cold start viscosity:

Actual assembly clean Δp = Flow rate x Δp Coefficient x Assembly Δp factor (from sizing table)

3. Sizing Recommendations to optimize performance and permit future flexibility:

- To avoid or minimize bypass during cold start the actual assembly clean ∆p calculation should be repeated for start-up conditions if cold starts are frequent.
- Actual assembly clean ∆p should not exceed 5 psid at normal operating viscosity.
- If suitable assembly size is approaching the upper limit of the recommended flow rate at the desired degree of filtration consider increasing the assembly to the next larger size if a finer degree of filtration might be preferred in the future. This practice allows the future flexibility to enhance fluid cleanliness without compromising clean △p or filter element life.
- Once a suitable filter assembly size is determined consider increasing the assembly to the next larger size to optimize filter element life and avoid bypass during cold start.
- When using water glycol or other specified synthetics we recommend increasing the filter assembly by 1~2 sizes.
- High viscosity fluid (ie gear lube ISO 220) will typically display very high viscosity as the temperature drops below 100f. For such applications avoiding bypass during start-up might not be possible.

DLF Single Element Assembly (housing + element) Differential Pressure Factors

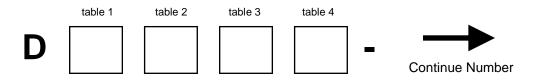
Media code	Port size	L36, 39 Max flow gpm (lpm)	Length code	∆p factor* (psid/gpm)	∆p factor* (bar/lpm)	Length code	∆p factor* (psid/gpm)	∆p factor* (bar/lpm)
1M		100 (375)		0.059	0.00113		0.047	0.00090
ЗM		150 (560)		0.050	0.00096		0.042	0.00081
6M	2" (DIN 050)	150 (560)	16,18	0.048	0.00092	36,39	0.041	0.00079
10M	Flange, NPT	150 (560)		0.046	0.00087		0.040	0.00077
16M		200 (750)		0.043	0.00082		0.038	0.00073
25M		200 (750)		0.040	0.00077		0.037	0.00071
**W		300 (1125)		0.037	0.00071		0.035	0.00067
1M		150 (560)		0.047	0.00078		0.034	0.00065
3M		200 (750)		0.038	0.00073		0.030	0.00058
6M	3" (DIN 080)	200 (750)	16,18	0.036	0.00069	36,39	0.029	0.00055
10M	Flange, NPT	250 (935)		0.034	0.00066		0.028	0.00053
16M		300 (1125)		0.031	0.00060		0.026	0.00050
25M		300 (1125)		0.028	0.00054	1	0.024	0.00046
**W		300 (1125)		0.025	0.00048	1	0.022	0.00042

*Max flow rate and Δp factor assumes v = 150 sus, 32 Centistokes. See Δp viscosity conversion formula for viscosity

Media code	Length code	Max flow gpm (lpm)	Port size	∆p factor* (psid/gpm)	∆p factor* (bar/lpm)
1M		600 (2250)		0.0081	0.000154
ЗM		800 (3000)		0.0055	0.000105
6M	36, 39	900 (3375)	4" (DIN 100)	0.0051	0.000098
10M		1300 (4875)	Flange	0.0045	0.000087
16M		1300 (4875)		0.0041	0.000079
25M		1500 (5625)		0.0035	0.000067
**W		1500 (5625)		0.0027	0.000052
1M		600 (2250)		0.0075	0.000144
ЗM		800 (3000)		0.005	0.000096
6M	36, 39	900 (3375)	6" (DIN 150)	0.0045	0.000087
10M		1300 (4875)	Flange	0.0039	0.000058
16M		1300 (4875)		0.0035	0.000067
25M		1500 (5625)		0.0029	0.000059
**W		1500 (5625)	1	0.0021	0.000041

DLFM3 Multi-Element Assembly (housing + element) Differential Pressure Factors

*Max flow rate and Δp factor assumes v = 150 sus, 32 Centistokes. See Δp viscosity conversion formula for viscosity


DLFM4 Multi-Element Assembly (housing + element) Differential Pressure Factors

Media code	Length code	Max flow gpm (lpm)	Port size	∆p factor* (psid/gpm)	∆p factor* (bar/lpm)
1M		600 (2250)		0.0067	0.000129
ЗM		800 (3000)		0.0048	0.000092
6M	36, 39	1000 (3750)	4" (DIN 100)	0.0044	0.000084
10M		1300 (4500)	Flange	0.0040	0.000077
16M		1400 (5250)		0.0037	0.000071
25M		1500 (6560)		0.0032	0.000061
**W		1500 (5625)		0.0025	0.000048
1M		600 (2250)		0.0062	0.000119
ЗM		800 (3000)		0.0043	0.000083
6M	36, 39	900 (3375)	6" (DIN 150)	0.0039	0.000075
10M		1300 (4875)	Flange	0.0034	0.000065
16M		1300 (4875)	1	0.0031	0.000059
25M		1500 (5625)	1	0.0026	0.000050
**W	1	1500 (5625)		0.00207	0.000038

*Max flow rate and Δp factor assumes v = 150 sus, 32 Centistokes. See Δp viscosity conversion formula for viscosity

DLF & DLFM DUPLEX ASSEMBLY - STEP 1 VALVE SELECTION

table 1	Port
code	configuration
S	Same side porting (standard)
0	Opposite side (In-line) porting (180°)

table 2	
code	Connections
C2	2" SAE Code-61 Flange
C3	3" SAE Code-61 Flange
D2	DN50 DIN 2633 Flange
D3	DN80 DIN 2633 Flange
D4	DN100 DIN 2633 Flange
D5	DN125 DIN 2633 Flange
D6	DN150 DIN 2633 Flange
D8	DN200 DIN 2633 Flange
D10	DN250 DIN 2633 Flange
F2	2" ANSI Flange
F3	3" ANSI Flange
F4	4" ANSI Flange
F5	5" ANSI Flange
F6	6" ANSI Flange
F8	8" ANSI Flange
F10	10" ANSI Flange

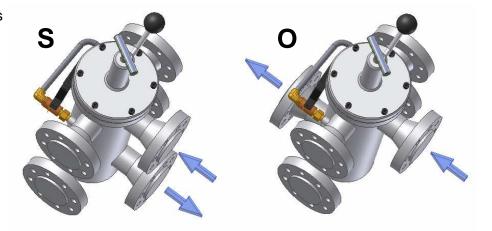
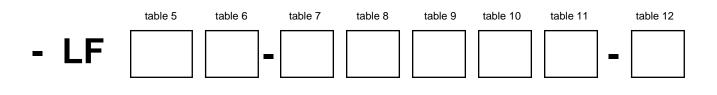

table 3	
code	Material
omit	Carbon steel
S	304 Stainless steel

table 4 code	Max Operating Pressure
omit	150 psi, 10 bar max ANSI 150#, DIN PN10
V	250 psi, 17 bar max ANSI 300#, DIN PN16
W*	450 psi, 30 bar max

*W option housings feature a slip and blind bolt arrangement on the cover with up to 9 bolts per vessel.


VALVE PORTING OPTIONS (SAME SIDE OR OPPOSITE SIDE)

In table 1 two port configurations are available for the DLF* transfer valve, same side porting (photo S) and opposite side (photo O). Opposite side porting is ideal for applications where a duplex is being added to an existing line. Opposite side porting is ideal for off-line systems.

DLF & DLFM DUPLEX ASSEMBLY - STEP 2 HOUSING SELECTION

FILTER ELEMENT PART NUMBER GUIDE

*For 8 element option use HP8314L39-** for element p/n

table 5	Elements
code	per vessel
omit	1 element
M3	3 elements
M4	4 elements
M9	9 elements
M14	14 elements
M22	22 elements

table 8	
code	Seals
В	Buna
E	EPR
V	Viton

table 6	
code	Element Configuration
	HP105 coreless series, positive
5	o-ring seals. Recommended
	change-out 45 psid (3,2 bar) NO BYPASS
	HP106 element with bypass,
6	25 psid (1,8 bar) bypass, orings
	change-out 22 psid (1,5 bar)
	HP107 element with bypass
7	50 psid (3,5 bar) bypass, orings
	change-out 45 psid (3,2 bar)
	USE element P/N HP8314L39-**
8	Interchanges with Pall HC8314,
	NO BYPASS, oring seals, max
	change-out 45 psid (3,2 bar)

table 9 code	Indicator
х	None (ported, plugged)
Р	Two pressure gages
D	22 psid visual ∆p gage, + electric alarm (120V AC)
E	22 psid visual Δp gage
F	45 psid visual ∆p gage, + electric alarm (120V AC)
G	45 psid visual ∆p gage

table 10	Max Operating
code	Pressure
omit	150 psi, 10 bar max ANSI 150#, DIN P10
V	250 psi, 17 bar max ANSI 300#, DIN P16
W*	450 psi, 30 bar max

*450 psi (30 bar) operating pressure unit features slip & blind flange lid bolt arrangement.

table 11	ASME code
code	(optional)
omit	No Code (Standard)
U	U code
М	UM code

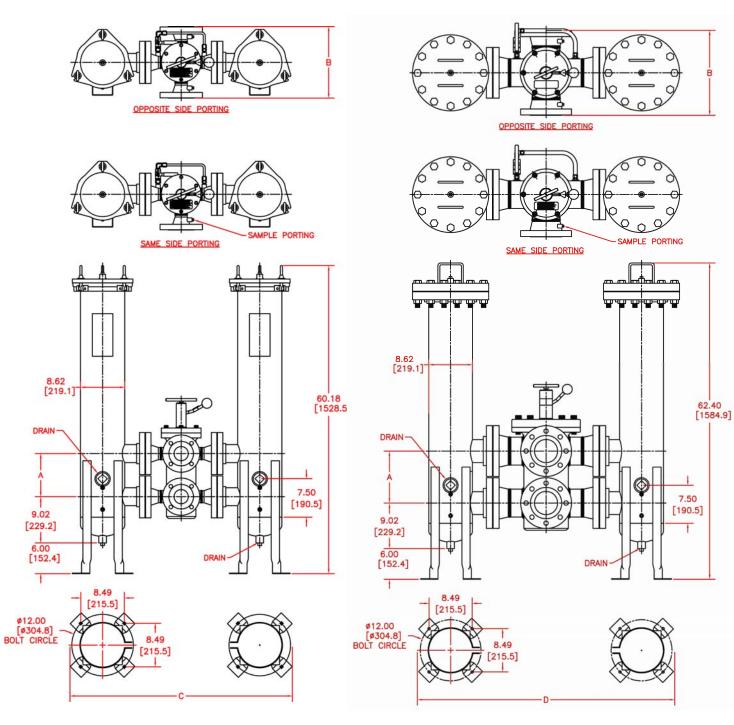
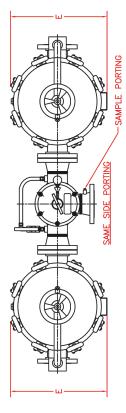
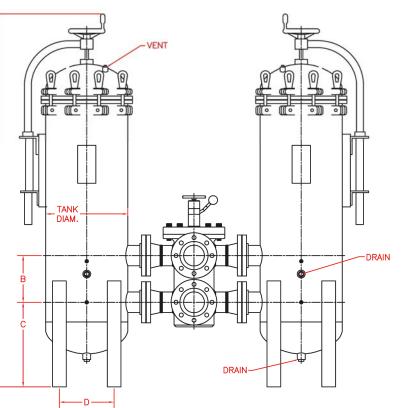
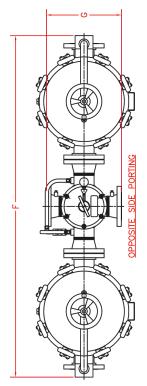

table 7	
code	Filtration rating
1M	$\beta 2.5_{(c)} = 1000 \ (\beta 1 = 200)$
ЗM	$\beta 5_{(c)} = 1000 \ (\beta 3 = 200)$
6M	$\beta 7_{(c)} = 1000 \ (\beta 6 = 200)$
6A	$\beta 7_{(c)} = 1000 + water removal$
10M	$\beta 12_{(c)} = 1000 \ (\beta 12 = 200)$
10A	$\beta 12_{(c)} = 1000 + water removal$
16M	$\beta 17_{(c)} = 1000 \ (\beta 17 = 200)$
16A	β 17 _(c) = 1000 + water removal
25M	$\beta 22_{(c)} = 1000 \ (\beta 25 = 200)$
25A	$\beta 22_{(c)} = 1000 + water removal$
25W	25μ nominal wire mesh
40M 40W	$\beta 35_{(c)} = 1000 \ (\beta 40 = 200)$
	or 40μ nominal wire mesh
74W	74μ nominal wire mesh
149W	149 μ nominal wire mesh
250W	250μ nominal wire mesh

table 12 code	Special Options
omit	No special options selected
18	Single element length ~18" nom. (LF only)
S	304 Stainless steel vessels and hardwre


DLF - 450 PSI (30 BAR)




	Port Size ANSI Flange (DIN Flange)							
Dimension	2" (050)	3" (150#) (080, 10 bar)	3" (300#) (080, 17 bar)	4" (100)	6" (150#) (150, 10 bar)	6" (300#) (150, 17 bar)		
Α	6.75 (171,5)	7.75 (196,9)	8.50 (215,9)	10.25 (260,4)	11.50 (292,1)	13.00 (330,2)		
В	14.00 (355,6)	14.00 (355,6)	14.00 (355,6)	16.75 (425,5)	19.75 (501,7)	19.75 (501,7)		
С	41.35 (1050,3)	43.35 (1101,1)	43.35 (1101,1)	50.35 (1278,9)	55.35 (1405,9)	55.35 (1405,9)		
D	41.70 (1059,2)	43.70 (1110,0)	43.70 (1110,0)	50.70 (1287,8)	55.70 (1414.8)	55.70 (1414,8)		
Weight	389 lbs (180 kg)	451 lbs (205 kg)	490 lbs (225 kg)	544 lbs (250 kg)	721 lbs (330 kg)	835 lbs (380 kg)		

DLFM* - 450 PSI (30 BAR)

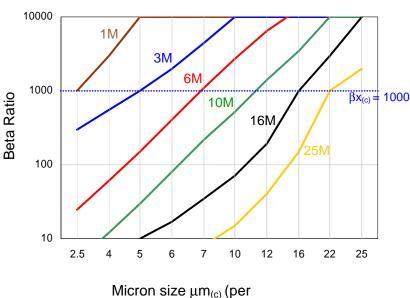
	Elmt	Tank	Port	Weight							
Series	Qty.	Diam.	Sizes	Lbs (Kg)	Α	В	С	D	E	F	G
			2	1190 (541)	81.9 (2079,6)	6.8 (171,5)	18.5 (470,0)	10.0 (254,0)	19.5 (495,9)	63.5 (1612,9)	14.0 (355,6)
			3 (150 Lb)	1251 (568)	81.9 (2079,6)	7.8 (196,9)	18.5 (470,0)	10.0 (254,0)	19.5 (495,9)	65.5 (1663,7)	14.0 (355,6)
DLFM3	3	16	3 (300 Lb)	1290 (586)	81.9 (2079,6)	8.5 (215,9)	18.5 (470,0)	10.0 (254,0)	19.5 (495,9)	65.5 (1663,7)	14.0 (355,6)
			4	1344 (611)	81.9 (2079,6)	10.3 (260,4)	18.5 (470,0)	10.0 (254,0)	19.5 (495,9)	72.5 (1841,5)	16.8 (425,5)
			2	1360 (618)	81.9 (2079,6)	6.8 (171,5)	18.5 (470,0)	12.0 (304,8)	21.9 (557,9)	67.5 (1714,5)	14.0 (355,6)
			3 (150 Lb)	1421 (646)	81.9 (2079,6)	7.8 (196,9)	18.5 (470,0)	12.0 (304,8)	21.9 (557,9)	69.5 (1765,3)	14.0 (355,6)
DLFM4	4	18	3 (300 Lb)	1460 (664)	81.9 (2079,6)	8.5 (215,9)	18.5 (470,0)	12.0 (304,8)	21.9 (557,9)	69.5 (1765,3)	14.0 (355,6)
			4	1514 (688)	81.9 (2079,6)	10.3 (260,4)	18.5 (470,0)	12.0 (304,8)	21.9 (557,9)	76.5 (1943,1)	16.8 (425,5)
			3 (150Lb)	1811 (823)	81.9 (2079,6)	7.8 (196,9)	18.5 (470,0)	18.0 (457,2)	29.3 (743,9)	81.5 (2070,1)	14.0 (355,6)
			3 (300 Lb)	1850 (841)	81.9 (2079,6)	8.5 (215,9)	18.5 (470,0)	18.0 (457,2)	29.3 (743,9)	81.5 (2070,1)	14.0 (355,6)
DLFM9	9	24	4	1904 (865)	81.9 (2079,6)	10.3 (260,4)	18.5 (470,0)	18.0 (457,2)	29.3 (743,9)	88.5 (2247,9)	16.8 (425,5)
			6 (150 Lb)	2081 (946)	81.9 (2079,6)	11.5 (292,1)	18.5 (470,0)	, ,	29.3 (743,9)	93.5 (2374,9)	19.8 (501,7)
			6 (300 Lb)	2195 (998)	81.9 (2079,6)	13.0 (330,2)	18.5 (470,0)	18.0 (457,2)	29.3 (743,9)	93.5 (2374,9)	19.8 (501,7)
			3 (150 Lb)	2141 (973)	81.9 (2079,6)	7.8 (196,9)	18.5 (470,0)	24.0 (609,6)	36.6 (929,8)	93.5 (2374,9)	14.0 (355,6)
			3 (300 Lb)	2180 (991)	81.9 (2079,6)	8.5 (215,9)	18.5 (470,0)	24.0 (609,6)	36.6 (929,8)	93.5 (2374,9)	14.0 (355,6)
DLFM14	14	30	4	2234 (1015)	81.9 (2079,6)	10.3 (260,4)	18.5 (470,0)	24.0 (609,6)	36.6 (929,8)	100.5 (2552,7)	16.8 (425,5)
			6 (150 Lb)	2411 (1095)	81.9 (2079,6)	11.5 (292,1)	18.5 (470,0)	()	· · · /	105.5 (2679,7)	(;)
			6 (300 Lb)	2525 (1148)	81.9 (2079,6)	13.0 (330,2)	18.5 (470,0)	,	()	105.5 (2679,7)	()
			4	2934 (1334)	81.9 (2079,6)	10.3 (260,4)	24.5 (622,3)	30.0 (762,0)	43.9 (1115,8)	112.5 (2857,5)	16.8 (425,5)
			6 (150 Lb)	3111 (1414)	81.9 (2079,6)	11.5 (292,1)	24.5 (622,3)	30.0 (762,0)	43.9 (1115,8)	117.5 (2984,5)	19.8 (501,7)
DLFM22	22	36	6 (300 Lb)	3225 (1465)	81.9 (2079,6)	13.0 (330,2)	24.5 (622,3)	30.0 (762,0)	43.9 (1115,8)	117.5 (2984,5)	19.8 (501,7)
			8	3595 (1634)	81.9 (2079,6)	14.0 (355,6)	24.5 (622,3)	30.0 (762,0)	43.9 (1115,8)	122.0 (3098,8)	30.5 (774,7)
			6 (150 Lb)	5831 (2650)	81.9 (2079,6)	11.5 (292,1)	24.5 (622,3)	36.0 (914,4)	51.3 (1301,8)	129.5 (3289,3)	19.8 (501,7)
			6 (300 Lb)	5945 (2702)	81.9 (2079,6)	13.0 (330,2)	24.5 (622,3)	36.0 (914,4)	51.3 (1301,8)	129.5 (3289,3)	19.8 (501,7)
DLFM31	31	42	8	6315 (2870)	81.9 (2079,6)	14.0 (355,6)	24.5 (622,3)	36.0 (914,4)	51.3 (1301,8)	134.0 (3403,6)	30.5 (774,7)
			10	6640 (3018)	81.9 (2079,6)	CALL	24.5 (622,3)	36.0 (914,4)	51.3 (1301,8)	CALL	CALL
			8	7315 (3334)	81.9 (2079,6)	14.0 (355,6)	24.5 (622,3)	42.0 (1066,8)	58.6 (1487,8)	146.0 (3708,4)	30.5 (774,7)
DLFM38	38	48	10	7640 (3472)	81.9 (2079,6)	CALL	24.5 (622,3)	42.0 (1066,8)	58.6 (1487,8)	CALL	CALL
			12	7982 (3628)	81.9 (2079,6)	CALL	24.5 (622,3)	42.0 (1066,8)	58.6 (1487,8)	CALL	CALL

FILTER MEDIA ... THE HEART OF A FILTER

Dynamic Filter Efficiency (DFE) Testing

Revolutionary test methods assure that DFE rated elements perform true to rating even under demanding variable flow and vibration conditions. Today's industrial and mobile hydraulic circuits require elements that deliver specified cleanliness under ALL circumstances. Wire mesh supports the media to ensure against cyclical flow fatigue, temperature, and chemical resistance failures possible in filters with synthetic support mesh. Contact your distributor or Hy-Pro for more information and published articles on DFE testing.

Coreless Filter Element Technology

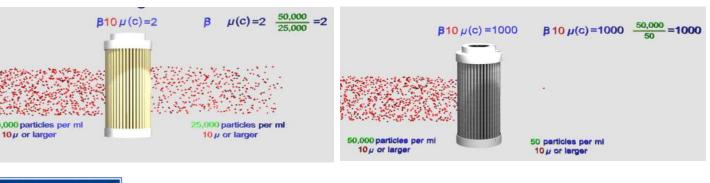

Hy-Pro coreless elements are featured in the FCL series. Elements are available in several configurations including HP106 & HP107 which include a integral bypass valve. The HP105 element is a coreless with no bypass, and the HP8314 is a direct interchange upgrade to the Pall HC8314 series coreless element.

Glass Media Code Filtration Efficiency (Beta Ratio) vs Micron Size

Fluid Compatibility

Petroleum based fluids, water glycol, polyol ester, phosphate ester, high water based fluids, and many other synthetics. Contact us for seal material selection assistance.

FILTER MEDIA SPECIFICATIONS



media code	media description
A	G7 Dualglass high performance media combined with water removal scrim. $\beta x_{(c)} = 1000 \ (\beta x = 200)$
Μ	G7 Dualglass our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{(c)} = 1000 (\beta x = 200)$
W	Stainless steel wire mesh media $\beta x_{(c)} = 2 \ (\beta x = 2)$ nominally rated

Elements Te	sted to ISO quality standards
ISO 2941	Collapse and burst resistance
ISO 2942	Fabrication and Integrity test
ISO 2948	Material compatibility with fluids
ISO 3724	Flow fatigue characteristics
ISO 3968	Pressure drop vs. flow rate
ISO 16889	Multi-pass performance testing

Hy-Pro G7 Dualglass media performance

Typical cellulose media performance

F

10 µ or large

DFN FILTER ASSEMBLY

Mechanical/Electro Hydraulic Controls

Turbine Lube Oil

Bearing Lube Oil

FD-ID-PA Fan Lube Oil

Fuel Handling

DFN Series Low Pressure Duplex Filter

PRODUCT SPECIFICATIONS

Materials	
Head	Aluminum
Bowl	Aluminum
Seals	Nitrile (buna) or Fluoro (viton)
Media options	G7 Dualglass, Stainless mesh
Interior coating	Anodized
Exterior coating	Powder coated or Anodized
Operating Pressure	
DFN19N Series	Maximum 63 Bar, 888 PSI
	(tested to 82 Bar, 1156 PSI)
DFN39N Series	Maximum 25 Bar, 352 PSI
	(tested to 32 Bar, 458 PSI)
Temperature rating	Buna -40°F(-40°C) to 225°F(120°C)
	Viton -15°F(-26°C) to 275°F(135°C)
Fluid compatibility	Biodegradable and mineral based
	fluids. For HWBF or specified
	synthetics consult factory

25 bar / 63 bar, 350 psi / 888 psi Max 3M media - 30 GPM / 115 LPM Max 25M media - 58 GPM / 184 LPM Max *W media - 102 GPM / 384 LPM Max

TYPICAL DUPLEX APPLICATIONS

Ideal for systems where filters must be serviced while continuous operation is not interrupted.

- Hydrogen Seal Oil
- Wind Turbine
- Hydraulic Systems
- Gearbox Systems
- Servo Systems
- Boiler Feed Pump
 - Upgrade Cuno Auto-Kleen filters to a continuous use duplex filter assembly per Westinghouse

Operation & Maintenance Memo 109.

PRODUCT FEATURES

Duplex Assembly	Maintain continuous filtration while
	servicing the filter element
User Friendly	Pistol grip handle with pressure
Handle	equalization release allows for easy
	switching with one hand
Compact Assembly	All valve components are integrated
	into the filter assembly head which
	keeps the overall assembly size
	very compact
DFE Rated Filter	DFE Rated filter elements ensure
Elements	fluid cleanliness even under severe
	dynamic conditions of hydraulic
	systems

Media	Element	Max flow rate*		Assembly ∆p factor*	Assembly ∆p factor*
code	Length	gpm (lpm)	Port size	∆BAR / Ipm	∆PSI / gpm
3M		4.0 (15)		0.055	2.871
6M	4	6.0 (22,5)	1" SAE	0.037	1.927
10M	(single)	9.2 (34,5)	Code 61 Flange	0.026	1.303
25M		13.5 (50,6)		0.017	0.886
** W		21.5 (80,6)		0.009	0.47
ЗM		6.7 (25,4)		0.034	1.771
6M	6	9.5 (35,6)	1" SAE	0.023	1.198
10M	(double)	11.5 (43,2)	Code 61 Flange	0.02	1.042
25M		14.3 (53,6)		0.016	0.834
** W		23 (86,2)		0.008	0.417
3M		9.5 (35,7)		0.024	1.261
6M	10	11.5 (43,2)	1" SAE	0.02	1.042
10M	(triple)	15.3 (57,5)	Code 61 Flange	0.015	0.782
25M		19.2 (72)	1	0.012	0.625
** W		24.8 (93)	1	0.006	0.313

DFN19N Series - Flow Rate vs. Differential Pressure (Assembly with Element)

*Max flow rate and Δp factor assumes v = 150 sus, 32 Centistokes (mm²/s). See Δp viscosity conversion formula for viscosity change.

DFN39N Series - Flow Rate vs. Differential Pressure (Assembly with Element)

Media code	Element Length	Max flow rate* gpm (lpm)	Port size	Assembly ∆p factor* ∆BAR / Ipm	Assembly ∆p factor* ∆PSI / gpm
3M		21.7 (81,5)		0.0106	0.552
6M	6	28.7 (107,9)	1 1/2" SAE	0.0080	0.417
10M	(single)	35.3 (132,4)	Code 61 Flange	0.0066	0.344
25M		45.9 (172,4)		0.0050	0.261
** W		77.4 (290,3)		0.0024	0.155
3M		27.4 (102,7)		0.0084	0.438
6M	10	37.2 (139,3)	1 1/2" SAE	0.0062	0.323
10M	(double)	41.8 (156,8)	Code 61 Flange	0.0059	0.287
25M		49.2 (184.5)		0.0041	0.234
** W		88.9 (333,3)		0.0019	0.135
3M		30.7 (115,1)		0.0075	0.391
6M	15	39.9 (149,6)	1 1/2" SAE	0.0060	0.301
10M	(triple)	49.2 (184.5)	Code 61 Flange	0.0051	0.266
25M		58.4 (219)		0.0040	0.210
** W		102.5 (384,6)]	0.0018	0.117

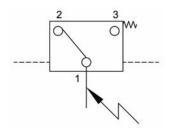
*Max flow rate and Δp factor assumes v = 150 sus, 32 Centistokes (mm²/s). See Δp viscosity conversion formula for viscosity change.

DFN FILTER ASSEMBLY SIZING & OPERATING PRESSURE GUIDELINES

Effective filter sizing requires consideration of flow rate, viscosity (operating and cold start), fluid type and degree of filtration. When properly sized, bypass during cold start can be avoided/minimized and optimum element efficiency and life achieved. The filter assembly differential pressure values provided for sizing differ for each media code, and assume 150 SSU (32Cts) viscosity and 0.86 fluid specific gravity. Use the following steps to identify the correct high pressure filter assembly.

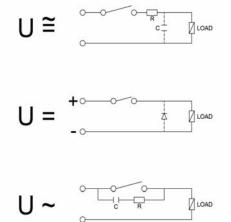
1. Calculate Δp coefficient at both operating and cold start viscosity:

		Actual Operating Viscosity (SSU)		Actual S.G.
∆p Coefficient	= -		Х	
		150		0.86


2. Calculate actual clean filter assembly Δp at both operating and cold start viscosity:

Actual assembly clean Δp = Flow rate x Δp Coefficient x Assembly Δp factor (from sizing table)

3. Sizing Recommendations to optimize performance and permit future flexibility:


- To avoid or minimize bypass during cold start the actual assembly clean ∆p calculation should be repeated for start-up conditions if cold starts are frequent.
- Actual assembly clean Δp should not exceed 15 psid at normal operating viscosity.
- If suitable assembly size is approaching the upper limit of the recommended flow rate at the desired degree of filtration consider increasing the assembly to the next larger size if a finer degree of filtration might be preferred in the future. This practice allows the future flexibility to enhance fluid cleanliness without compromising clean Δp or filter element life.
- Once a suitable filter assembly size is determined consider increasing the assembly to the next larger size to optimize filter element life and avoid bypass during cold start.
- When using water glycol or other specified synthetics we recommend increasing the filter assembly by 1~2 sizes.
- High viscosity fluid (ie gear lube ISO 220) will typically display very high viscosity as the temperature drops below 100f. For such applications avoiding bypass during start-up might not be possible.

ELECTRICAL + LED, ELECTRICAL DIFFERENTIAL PRESSURE INDICATOR INFORMATION

- Indication pressure 32 psid, 2,2 bar
- Switching voltage max 230 V ~/=
- Switching current max 2,5 A
- Switching power max 3,5 VA AC / 5 W DC
- Contact load max 60 VA / 40 W
- Inrush current 70 VA

- Electrical protection IP 65
- Cable connection PG11 0 6-10
- Contact type Bistable
- Current limiter for DC and AC voltage. If loads are connected over long distances a protective resistor should be connected in series in order to limit the current.
- Spark suppression in DC applications. The contacts of reed switches open very
 fast which causes voltage peaks to be induced when switching off inductive loads
 (relays, lifting magnets, solenoids). The self-induction currents are short-circuited
 by connecting a diode in parallel to the inductive load
- Spark suppression in AC applications. In AC applications a diode connected in parallel to the load is not sufficient. RC elements should be connected in parallel to the reed switch.

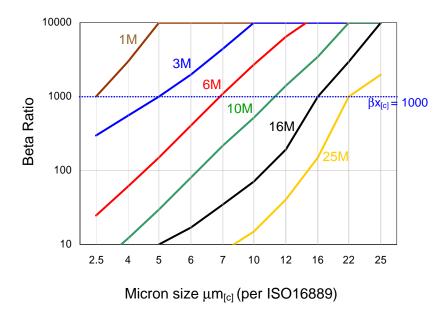
www.filterelement.com

FILTER MEDIA ... THE HEART OF A FILTER

Dynamic Filter Efficiency (DFE) Testing

Revolutionary test methods assure that DFE rated elements perform true to rating even under demanding variable flow and vibration conditions. Today's industrial and mobile hydraulic circuits require elements that deliver specified cleanliness under ALL circumstances. Wire mesh supports the media to ensure against cyclical flow fatigue, temperature, and chemical resistance failures possible in filters with synthetic support mesh. Contact your distributor or Hy-Pro for more information and published articles on DFE testing.

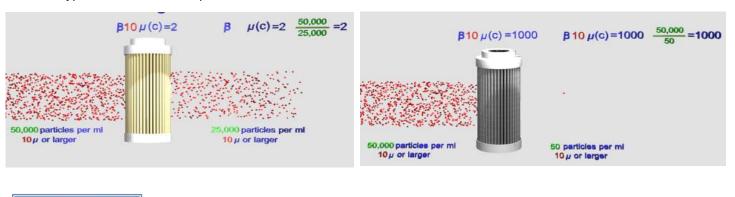
Media Options


Through extensive testing we have developed media choices to handle any application. Options include G7 Dualglass, G7 Dualglass + Water Removal and Stainless steel wire mesh.

Fluid Compatibility

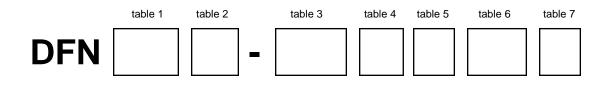
Petroleum based fluids, water glycol, polyol ester, phosphate ester, high water based fluids, and many other synthetics. Contact us for seal material selection assistance.

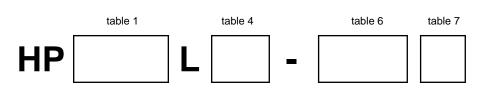
FILTER MEDIA SPECIFICATIONS


Glass Media Code Filtration Efficiency (Beta Ratio) vs Micron Size (testing per ISO16889 multipass test)

123

media	media
code	description
A	G7 Dualglass high performance media combined with water removal
M	scrim. $\beta x_{[c]} = 1000 \ (\beta x = 200)$ G7 Dualglass our latest generation of DFE rated, high performance glass media for hydraulic & lubrication fluids. $\beta x_{[c]} = 1000 \ (\beta x = 200)$
W	Stainless steel wire mesh media $\beta x_{[c]} = 2 \ (\beta x = 2)$ nominally rated


Hy-Pro G7 Dualglass media performance


Typical cellulose media performance

DFN FILTER ASSEMBLY PART NUMBER GUIDE

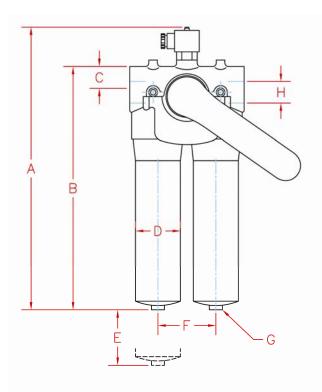
DFN FILTER ELEMENT PART NUMBER GUIDE

Bold denotes standard product option. Non-standard options are subject to longer than standard lead time

table 1	
code	Series option (max flow, max pressure)
19N	Small profile DFN Duplex Assembly 24.8 GPM, 93 LPM maximum flow rate 63 Bar, 888 PSI maximum operating pressure
39N	Large profile DFN Duplex Assembly 102 GPM, 382 LPM maximum flow rate 25 Bar, 350 psi maximum operating pressure

table 2 code	Bypass valve
В	3,5 bar, 50 psid bypass
X*	No bypass

* If maximum system pressure will exceed 25 Bar, 350 PSI and DFN19N assembly is selected the assembly must include a bypass valve (code B) for table 2. HP19N element collapse rating is 30 Δ Bar, 450 Δ PSI.


table 3 code	Porting option (series)	table 4 code	Element length	table 5 code	∆P Indicator
B1	G1" BSPP thread (19N only)	4	4" element nominal (19N only)	v	Visual pop-up indicator only (manual
B2	G1 ^{1/2} " BSPP thread (39N only)	6	6" element nominal (19N, 39N)	-	reset) Indication: 2.2 bar Δ , 32 psi Δ
F1	SAE 1" Code 61 Flange (19N only)	10	10" element nominal (19N, 39N)	1	Visual indicator with electrical alarm
F2	SAE 1 ^{1/2} " Code 61 Flange (39N only)	15	15" element nominal (39N only)	L	Indication: 2.2 bar Δ , 32 psi Δ

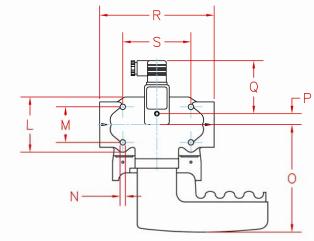
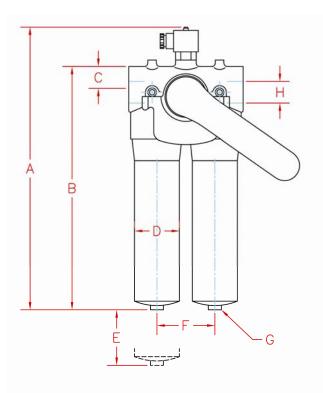
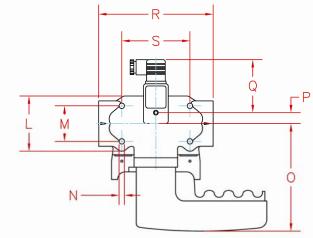

table 6	
code	Media selection
1M	$\beta 2.5_{[c]} = 1000, \ \beta 1 = 200$
3M	$\beta 5_{[c]} = 1000, \ \beta 3 = 200$
6M	$\beta 7_{[c]} = 1000, \beta 6 = 200$
10M	$\beta 12_{[c]} = 1000, \ \beta 12 = 200$
25M	$\beta 22_{[c]} = 1000, \ \beta 25 = 200$
25W	25u nominal mesh media
40W	40u nominal mesh media
74W	74u nominal mesh media
149W	149u nominal mesh media

table 7	
code	Seal material
В	Buna
	-40°F(-40°C) to 225°F(120°C)
V	Viton
	-15°F(-26°C) to 275°F(135°C)

DFN19N INSTALLATION DRAWING AND SPARE PARTS LIST




		_	- K	
1			N	
+	8			
1	2		·	

	DFN19N*-* 4	DFN419*-* 6	DFN19N*-* 10
	IN (mm)	IN (mm)	IN (mm)
Α	10.35 (263)	12.72 (323)	16.38 (416)
В	8.07 (205)	10.43 (265)	14.1 (358)
С	1.50 (38)	1.50 (38)	1.50 (38)
D	2.60 (66)	2.60 (66)	2.60 (66)
E	3.15 (80)	3.15 (80)	3.15 (80)
F	3.34 (85)	3.34 (85)	3.34 (85)
G	SW27	SW27	SW27
Н	G1 BSPP or 1" SAE Flange Code 61	G1 BSPP or 1" SAE Flange Code 61	G1 BSPP or 1" SAE Flange Code 61
I	1.03 (26,2)	1.03 (26,2)	1.03 (26,2)
J	M 10 x 20	M 10 x 20	M 10 x 20
К	2.06 (52,4)	2.06 (52,4)	2.06 (52,4)
L	3.19 (81)	3.19 (81)	3.19 (81)
М	2.05 (52)	2.05 (52)	2.05 (52)
Ν	M 8 x 16	M 8 x 16	M 8 x 16
0	5.47 (139)	5.47 (139)	5.47 (139)
Р	0.63 (16)	0.63 (16)	0.63 (16)
Q	3.07 (78)	3.07 (78)	3.07 (78)
R	6.61 (168)	6.61 (168)	6.61 (168)
S	3.94 (100)	3.94 (100)	3.94 (100)
weight	5.7 Lbs (2,6 kg)	6.4 Lbs (2,9 kg)	7.3 Lbs (3,3 kg)

DFN39N INSTALLATION DRAWING AND SPARE PARTS LIST

1	K
+	$\bigcirc \bigcirc \bigcirc \bigcirc$
	- J

	DFN39N*-* 6	DFN39N*-* 10	DFN39N*-* 15
	IN (mm)	IN (mm)	IN (mm)
Α	13.74 (349)	17.48 (444)	23.15 (588)
В	11.45 (291)	15.20 (386)	20.87 (530)
С	1.58 (40)	1.58 (40)	1.58 (40)
D	4.29 (109)	4.29 (109)	4.29 (109)
E	4.33 (110)	4.33 (110)	4.33 (110)
F	5.51 (140)	5.51 (140)	5.51 (140)
G	SW32	SW32	SW32
н	G1 1/2" BSPP, 1 1/2" SAE	G1 1/2" BSPP, 1 1/2" SAE	G1 1/2" BSPP, 1 1/2" SAE
	Flange Code 61	Flange Code 61	Flange Code 61
1	1.40 (35,7)	1.40 (35,7)	1.40 (35,7)
J	M 12 x 20	M 12 x 20	M 12 x 20
ĸ	2.75 (69,9)	2.75 (69,9)	2.75 (69,9)
L	5.51 (140)	5.51 (140)	5.51 (140)
м	2.44 (62)	2.44 (62)	2.44 (62)
N	M 10 x 20	M 10 x 20	M 10 x 20
0	5.47 (139)	5.47 (139)	5.47 (139)
Р	0.75 (19)	0.75 (19)	0.75 (19)
Q	3.07 (78)	3.07 (78)	3.07 (78)
R	11.02 (280)	11.02 (280)	11.02 (280)
S	8.27 (210)	8.27 (210)	8.27 (210)
weight	15.6 Lbs (7,1 kg)	17.6 Lbs (8,0 kg)	35.9 Lbs (16,3 kg)

DFN39N POWER GENERATION FIELD APPLICATION EXAMPLES

Application: Flow Rate: Oper. Pressure: Requirement:

Hydrogen Seal Oil 40 GPM (150 LPM) 20 PSI (1.41 BAR) Continuous Operation

The filter was installed outside the turbine shell along with external bypass and differential pressure indicator loops since a low bypass cracking pressure (< 20 psid) was required to prevent hydrogen seal damage. The filter integral bypass cracking pressure is 50 psid. The external Δp gauge allows for filter condition monitoring, and the duplex arrangement allows for continuous filtration even when the filter element is being serviced. This installation satisfied the requirements detailed in Westinghouse Operation & Maintenance Memo 109.

Application: Flow Rate: Oper. Pressure: Requirement:

Mechanical Control Relay Oil 30 GPM (112 LPM) 150 PSI (10 BAR) Continuous Operation

The filter was installed outside the turbine shell along with external bypass and differential pressure indicator loops. In this case there was sufficient system operating pressure to utilize the filter assembly integral bypass valve with a setting of 50 psid (3.2 Bar) for pressure relief. No external bypass line or Δp gauge was required. This installation satisfied the requirements detailed in Westinghouse Operation & Maintenance Memo 109.

DFH FILTER ASSEMBLY

DFH Series High Pressure Duplex Filter

210 bar/250 bar, 3000 psi/3600 psi Max 3M media - 30 GPM / 115 LPM Max 25M media - 58 GPM / 184 LPM Max *W media - 102 GPM / 384 LPM Max

TYPICAL DUPLEX APPLICATIONS

Ideal for systems where filters must be serviced while continuous operation is not interrupted.

- Hydrogen Seal Oil
- Wind Turbine
- Hydraulic Systems
- Gearbox Systems
- Servo Systems
- Boiler Feed Pump

- Mechanical/Electro
 Hydraulic Controls
- Turbine Lube Oil
- Bearing Lube Oil
- Fuel Handling
- FD-ID-PA Fan Lube Oil

PRODUCT SPECIFICATIONS

Materials	
Head	Steel
Bowl	Forged Steel
Seals	Nitrile (buna) or Fluoro (viton)
Media options	G7 Dualglass, Stainless mesh
Interior coating	Corrosion resistant
Exterior coating	Powder paint coated or Anodized
Operating Pressure	
DFH19* Series	Maximum 250 Bar, 3600 PSI
	(tested to 325 Bar, 4700 PSI)
DFH39* Series	Maximum 200 Bar, 3000 PSI
	(tested to 260 Bar, 3750 PSI)
Temperature rating	Buna -40°F(-40°C) to 225°F(120°C)
	Viton -15°F(-26°C) to 275°F(135°C)
Fluid compatibility	Biodegradable and mineral based
	fluids. For High water based or
	specified synthetics consult factory

PRODUCT FEATURES

Duplex Assembly	Maintain continuous filtration while servicing the filter element
User Friendly	Pistol grip handle with pressure
Handle	equalization release allows for easy
	switching with one hand
Compact Assembly	All valve components are integrated
	into the filter assembly head which
	keeps the overall assembly size
	very compact
DFE Rated Filter	DFE Rated filter elements ensure
Elements	fluid cleanliness even under severe
	dynamic conditions of hydraulic
	systems

Media	Element	Max flow rate*		Assembly ∆p factor*	Assembly ∆p factor*
code	Length	gpm (lpm)	Port size	∆BAR / Ipm	∆PSI / gpm
3M		4.0 (15)		0.055	2.871
6M	4	6.0 (22,5)	1" SAE	0.037	1.927
10M	(single)	9.2 (34,5)	Code 61 Flange	0.026	1.303
25M		13.5 (50,6)		0.017	0.886
** W		21.5 (80,6)		0.009	0.47
ЗM		6.7 (25,4)		0.034	1.771
6M	6	9.5 (35,6)	1" SAE	0.023	1.198
10M	(double)	11.5 (43,2)	Code 61 Flange	0.02	1.042
25M		14.3 (53,6)		0.016	0.834
** W		23 (86,2)		0.008	0.417
3M		9.5 (35,7)		0.024	1.261
6M	10	11.5 (43,2)	1" SAE	0.02	1.042
10M	(triple)	15.3 (57,5)	Code 61 Flange	0.015	0.782
25M		19.2 (72)	1	0.012	0.625
** W		24.8 (93)	1	0.006	0.313

DFH19* Series - Flow Rate vs. Differential Pressure (Assembly with Element)

*Max flow rate and Δp factor assumes v = 150 sus, 32 Centistokes (mm²/s). See Δp viscosity conversion formula for viscosity change.

DFH39* Series - Flow Rate vs. Differential Pressure (Assembly with Element)

Media code	Element Length	Max flow rate* gpm (lpm)	Port size	Assembly ∆p factor* ∆BAR / Ipm	Assembly ∆p factor* ∆PSI / gpm
3M		21.7 (81,5)		0.0106	0.552
6M	6	28.7 (107,9)	1 1/2" SAE	0.0080	0.417
10M	(single)	35.3 (132,4)	Code 61 Flange	0.0066	0.344
25M		45.9 (172,4)		0.0050	0.261
** W		77.4 (290,3)		0.0024	0.155
3M		27.4 (102,7)		0.0084	0.438
6M	10	37.2 (139,3)	1 1/2" SAE	0.0062	0.323
10M	(double)	41.8 (156,8)	Code 61 Flange	0.0059	0.287
25M		49.2 (184.5)	-	0.0041	0.234
** W		88.9 (333,3)		0.0019	0.135
3M		30.7 (115,1)		0.0075	0.391
6M	15	39.9 (149,6)	1 1/2" SAE	0.0060	0.301
10M	(triple)	49.2 (184.5)	Code 61 Flange	0.0051	0.266
25M	1	58.4 (219)		0.0040	0.210
** W		102.5 (384,6)		0.0018	0.117

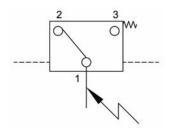
*Max flow rate and Δp factor assumes v = 150 sus, 32 Centistokes (mm²/s). See Δp viscosity conversion formula for viscosity change.

DFH FILTER ASSEMBLY SIZING & OPERATING PRESSURE GUIDELINES

Effective filter sizing requires consideration of flow rate, viscosity (operating and cold start), fluid type and degree of filtration. When properly sized, bypass during cold start can be avoided/minimized and optimum element efficiency and life achieved. The filter assembly differential pressure values provided for sizing differ for each media code, and assume 150 SSU (32cSt) viscosity and 0.86 fluid specific gravity. Use the following steps to identify the correct high pressure filter assembly.

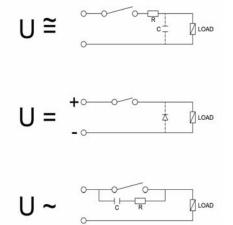
1. Calculate Δp coefficient at both operating and cold start viscosity:

		Actual Operating Viscosity (SSU)		Actual S.G.
∆p Coefficient	= -		Х	
		150		0.86


2. Calculate actual clean filter assembly Δp at both operating and cold start viscosity:

Actual assembly clean Δp = Flow rate x Δp Coefficient x Assembly Δp factor (from sizing table)

3. Sizing Recommendations to optimize performance and permit future flexibility:


- To avoid or minimize bypass during cold start the actual assembly clean ∆p calculation should be repeated for start-up conditions if cold starts are frequent.
- Actual assembly clean Δp should not exceed 15 psid at normal operating viscosity.
- If suitable assembly size is approaching the upper limit of the recommended flow rate at the desired degree of filtration consider increasing the assembly to the next larger size if a finer degree of filtration might be preferred in the future. This practice allows the future flexibility to enhance fluid cleanliness without compromising clean △p or filter element life.
- Once a suitable filter assembly size is determined consider increasing the assembly to the next larger size to optimize filter element life and avoid bypass during cold start.
- When using water glycol or other specified synthetics we recommend increasing the filter assembly by 1~2 sizes.
- High viscosity fluid (ie gear lube ISO 220) will typically display very high viscosity as the temperature drops below 100f. For such applications avoiding bypass during start-up might not be possible.

ELECTRICAL + LED, ELECTRICAL DIFFERENTIAL PRESSURE INDICATOR INFORMATION

- Indication pressure 32 psid, 2,2 bar
- Switching voltage max 230 V ~/=
- Switching current max 2,5 A
- Switching power max 3,5 VA AC / 5 W DC
- Contact load max 60 VA / 40 W
- Inrush current 70 VA

- Electrical protection IP 65
- Cable connection PG11 0 6-10
- Contact type Bistable
- Current limiter for DC and AC voltage. If loads are connected over long distances a protective resistor should be connected in series in order to limit the current.
- Spark suppression in DC applications. The contacts of reed switches open very
 fast which causes voltage peaks to be induced when switching off inductive loads
 (relays, lifting magnets, solenoids). The self-induction currents are short-circuited
 by connecting a diode in parallel to the inductive load
- Spark suppression in AC applications. In AC applications a diode connected in parallel to the load is not sufficient. RC elements should be connected in parallel to the reed switch.

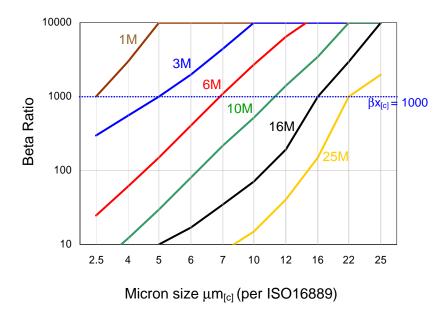
www.filterelement.com

FILTER MEDIA ... THE HEART OF A FILTER

Dynamic Filter Efficiency (DFE) Testing

Revolutionary test methods assure that DFE rated elements perform true to rating even under demanding variable flow and vibration conditions. Today's industrial and mobile hydraulic circuits require elements that deliver specified cleanliness under ALL circumstances. Wire mesh supports the media to ensure against cyclical flow fatigue, temperature, and chemical resistance failures possible in filters with synthetic support mesh. Contact your distributor or Hy-Pro for more information and published articles on DFE testing.

Media Options

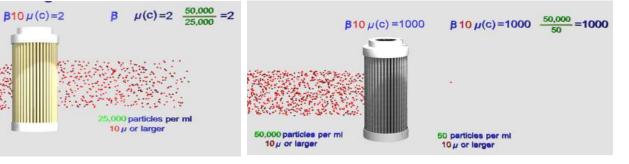

Through extensive testing we have developed media choices to handle any application. Options include G7 Dualglass, G7 Dualglass + Water Removal and Stainless steel wire mesh.

Fluid Compatibility

Petroleum based fluids, water glycol, polyol ester, phosphate ester, high water based fluids, and many other synthetics. Contact us for seal material selection assistance.

FILTER MEDIA SPECIFICATIONS

Glass Media Code Filtration Efficiency (Beta Ratio) vs Micron Size (testing per ISO16889 multipass test)

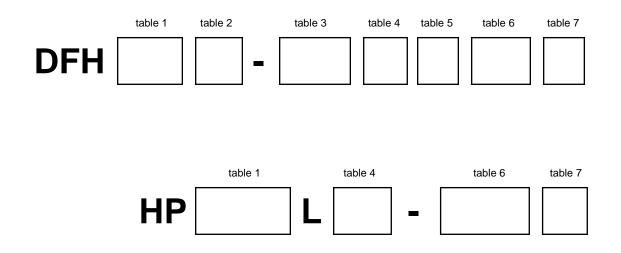


media	media
code	description
А	G7 Dualglass high performance
	media combined with water removal
	scrim. $\beta x_{[c]} = 1000 \ (\beta x = 200)$
М	G7 Dualglass our latest generation
	of DFE rated, high performance glass
	media for hydraulic & lubrication
	fluids. $\beta x_{[c]} = 1000 \ (\beta x = 200)$
W	Stainless steel wire mesh media $\beta x_{[c]} = 2 \ (\beta x = 2)$ nominally rated

50,000 B10 µ(c)=2 $\mu(c) = 2$ =2 25.000

Typical cellulose media performance

Hy-Pro G7 Dualglass media performance



0,000 particles per m

10 u or large

DFH FILTER ASSEMBLY PART NUMBER GUIDE

Bold denotes standard product option. Non-standard options are subject to longer than standard lead time

table 1	Series option
code	*max flow, max pressure
19H	Element collapse rating 3000 psid, 200 bar. 24.8 GPM, 93 LPM maximum flow rate. 250 Bar, 3600 PSI maximum operating pressure
19N	Element collapse rating 450 psid, 30 bar 24.8 GPM, 93 LPM maximum flow rate. 250 Bar, 3600 PSI maximum operating pressure
39H	Element collapse rating 3000 psid, 200 bar. 102 GPM, 382 LPM maximum flow rate. 210 Bar, 3000 psi maximum operating pressure
39N	Element collapse rating 450 psid, 30 bar. 102 GPM, 382 LPM maximum flow rate. 210 Bar, 3000 psi maximum operating pressure

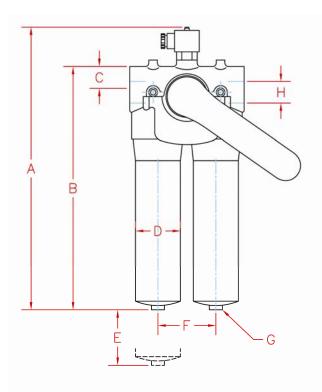
table 2 code	Bypass valve
В	7 bar, 102 psid bypass
X*	No bypass

* If maximum system pressure will exceed 25 Bar, 350 PSI and DFH assembly is selected the assembly must include a bypass valve (code B) for table 2, or the H element collapse rating must be selected.

table 4 code	Element length
4	4" element nominal (19* only)
6	6" element nominal (19*, 39*)
10	10" element nominal (19*, 39*)
15	15" element nominal (39* only)

table 3 code	Porting option (series)
B1	G1" BSPP thread (DFH19* only)
B2	G1 ^{1/2} " BSPP thread (DFH39* only)
F1	SAE 1" Code 61 Flange (DFH19* only)
F2	SAE 1 ^{1/2} " Code 61 Flange (DFH39* only)

table 5 code	∆P Indicator
v	Visual pop-up indicator only (manual reset) Indication: 5 bar∆, 72 psi∆
L	Visual indicator with electrical alarm Indication: 5 bar∆, 72 psi∆


*Adjusting for viscosity and temperature of actual system is critical to selecting the proper filter assembly.

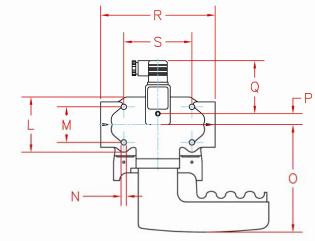
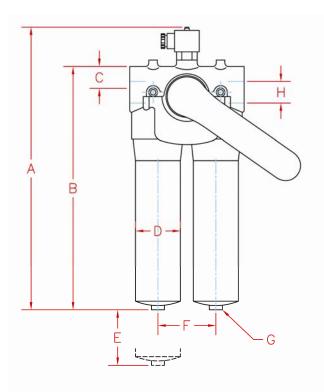
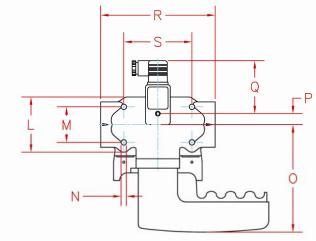

table 6	
code	Media selection
1M	$\beta 2.5_{[c]} = 1000, \ \beta 1 = 200$
3M	$\beta 5_{[c]} = 1000, \ \beta 3 = 200$
6M	$\beta 7_{[c]} = 1000, \ \beta 6 = 200$
10M	$\beta 12_{[c]} = 1000, \ \beta 12 = 200$
25M	$\beta 22_{[c]} = 1000, \ \beta 25 = 200$
25W	25u nominal mesh media
40W	40u nominal mesh media
74W	74u nominal mesh media
149W	149u nominal mesh media

table 7	
code	Seal material
В	Buna
	-40°F(-40°C) to 225°F(120°C)
V	Viton
	-15°F(-26°C) to 275°F(135°C)

DFH19* INSTALLATION DRAWING AND SPARE PARTS LIST




1	The second secon	
+		
1		

	DFH19**-* 4	DFH19**-* 6	DFH19**-* 10
	IN (mm)	IN (mm)	IN (mm)
Α	10.35 (263)	12.72 (323)	16.38 (416)
В	8.07 (205)	10.43 (265)	14.1 (358)
С	1.50 (38)	1.50 (38)	1.50 (38)
D	2.60 (66)	2.60 (66)	2.60 (66)
E	3.15 (80)	3.15 (80)	3.15 (80)
F	3.34 (85)	3.34 (85)	3.34 (85)
G	SW27	SW27	SW27
н	G1 BSPP or 1" SAE Flange Code 61	G1 BSPP or 1" SAE Flange Code 61	G1 BSPP or 1" SAE Flange Code 61
I	1.03 (26,2)	1.03 (26,2)	1.03 (26,2)
J	M 10 x 20	M 10 x 20	M 10 x 20
К	2.06 (52,4)	2.06 (52,4)	2.06 (52,4)
L	3.19 (81)	3.19 (81)	3.19 (81)
М	2.05 (52)	2.05 (52)	2.05 (52)
Ν	M 8 x 16	M 8 x 16	M 8 x 16
0	5.47 (139)	5.47 (139)	5.47 (139)
Р	0.63 (16)	0.63 (16)	0.63 (16)
Q	3.07 (78)	3.07 (78)	3.07 (78)
R	6.61 (168)	6.61 (168)	6.61 (168)
S	3.94 (100)	3.94 (100)	3.94 (100)
weight	5.7 Lbs (2,6 kg)	6.4 Lbs (2,9 kg)	7.3 Lbs (3,3 kg)

DFH39* INSTALLATION DRAWING AND SPARE PARTS LIST

ł	
. +	
1-1	- - J

	DFH39**-* 6	DFH39**-* 10	DFH39**-* 15
	IN (mm)	IN (mm)	IN (mm)
Α	13.74 (349)	17.48 (444)	23.15 (588)
В	11.45 (291)	15.20 (386)	20.87 (530)
С	1.58 (40)	1.58 (40)	1.58 (40)
D	4.29 (109)	4.29 (109)	4.29 (109)
E	4.33 (110)	4.33 (110)	4.33 (110)
F	5.51 (140)	5.51 (140)	5.51 (140)
G	SW32	SW32	SW32
н	G1 1/2" BSPP, 1 1/2" SAE Flange Code 61	G1 1/2" BSPP, 1 1/2" SAE Flange Code 61	G1 1/2" BSPP, 1 1/2" SAE Flange Code 61
I	1.40 (35,7)	1.40 (35,7)	1.40 (35,7)
J	M 12 x 20	M 12 x 20	M 12 x 20
К	2.75 (69,9)	2.75 (69,9)	2.75 (69,9)
L	5.51 (140)	5.51 (140)	5.51 (140)
М	2.44 (62)	2.44 (62)	2.44 (62)
Ν	M 10 x 20	M 10 x 20	M 10 x 20
0	5.47 (139)	5.47 (139)	5.47 (139)
Р	0.75 (19)	0.75 (19)	0.75 (19)
Q	3.07 (78)	3.07 (78)	3.07 (78)
R	11.02 (280)	11.02 (280)	11.02 (280)
S	8.27 (210)	8.27 (210)	8.27 (210)
weight	15.6 Lbs (7,1 kg)	17.6 Lbs (8,0 kg)	35.9 Lbs (16,3 kg)

RESERVOIR ACCESSORIES

Product Literature

www.filterelement.com 12955 Ford Drive . Fishers, IN 46038 . USA . ph 317.849.3535 . fx 317.849.9201

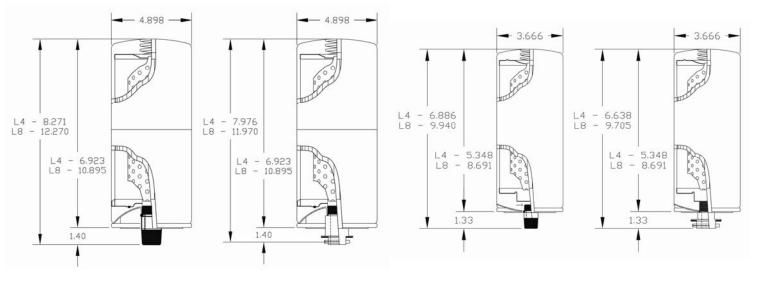
Breathers & Adaptors

PRODUCT SPECIFICATIONS

Media Code	Media Efficiency (Air)
3M	0.3µ absolute
6M	0.6µ absolute
10C	3.0μ absolute
12M	1.0μ absolute
25C	10.0μ absolute
25M	2.5μ absolute
Operating temp.	-20°F (-28°C) to 200°F (93°C)

Spin-on Breathers

Spin-on Breathers


Adaptors and Disposable Breathers

Fluid contamination is the root cause of most hydraulic system failures. Controlling airborne contamination is critical. The synergy of Hy-Pro fluid filter elements and Hy-Pro Spin-on breathers yields clean fluid and a healthy hydraulic system.

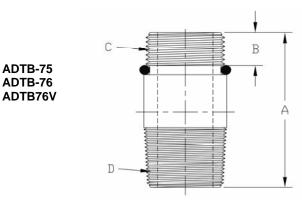
SPIN-ON BREATHER APPLICATIONS

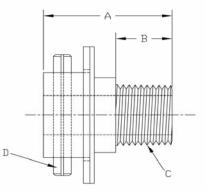
- Replace ineffective filler / breather caps.
- Control contaminant ingression with glass media elements.
- High capacity, High efficiency pleated elements extend the life of other filters in the system.

SPIN-ON BREATHER + ADAPTOR ASSEMBLY INSTALLATION DRAWINGS

HP75L* -** + ADTB-75

137


HP75L*-** + ADBB-75


HP76L*-** + ADTB-76

HP76L*-** + ADBB-76

SPIN-ON BREATHER ADAPTOR DIMENSIONS

Spin-on adaptor number	A - IN (mm) Overall length	B - IN (mm) Thread length	C - IN (mm) Element connection	D - IN (mm) Reservoir connection	Seal Material	Case qty
ADBB-75 (aluminum)	3.00 (76,2)	0.50 (12,7)	1 1/2" - 16 UN (HP75** series spin-on)	1.87" pin length 1.40" diameter boss	Buna	1
ADBB-76 (aluminum)	2.00 (50,8)	0.50 (12,7)	1" - 12 UNF-2A (HP76** series spin-on)	1.87" pin length 1.40" diameter boss	Buna	1
ADTB-75 (plated steel)	3.00 (76,2)	0.50 (12,7)	1 1/2" - 16 UN (HP75** series spin-on)	1 1/4" NPT	Buna	1
ADTB-76 (plated steel)	2.00 (50,8)	0.50 (12,7)	1" - 12 UNF-2A (HP76** series spin-on)	3/4" NPT	Buna	1
ADTB-76V (plated steel)	2.00 (50,8)	0.50 (12,7)	1 1/8" - 12 UNF-2A (HP76** series spin-on)	3/4" NPT	Buna	1

ADBB-75 ADBB-76

REPLACEMENT ELEMENT ORDER GUIDE

table 2

table 1

table 1	flow rate
code	(spin-on size)
75L4	290 gpm, 39 cfm (5.0" OD x 11.0" OAL)
75L8	290 gpm, 39 cfm (5.0" OD x 11.0" OAL)
76L4	212 gpm, 28 cfm (3.75" OD x 5.4" OAL)
76L8	212 gpm, 28 cfm (3.75" OD x 8.7" OAL)

table 2	
code	filtration rating
1M	0.1μ absolute air filtration
3M	0.3μ absolute air filtration
6M	0.6μ absolute air filtration
12M	1.0 μ absolute air filtration
25M	2.2 μ absolute air filtration

PRODUCT SPECIFICATIONS

Construction	Tube assembly & Shroud: Plated steel
materials	Element: Synthetic end-caps, handle
	(element will incinerate at 1100°F)
Filtration	Media code -3M: 0.3µ absolute
Efficiency	Media code-6M: 0.6µ absolute
	Media code-10M: 1.0µ absolute
	Media code-25M: 2.5µ absolute
Weight	BF25*11, BF30*11 23.5 Lbs, 10.4 kg
	BF25*17, BF30*17 26.5 Lbs, 12 kg
Temperature	Buna: -40f(-40c) to 225f (107c)
	Viton: -15f(-26c) to 275f(135c)

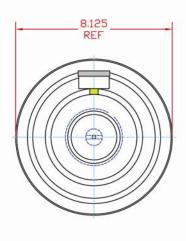
Breather	Air Flow		
Number	GPM	CFM	L/min
BF*2511	1450	195	5500
BF*2517	1580	212	6000
BF*3011	2100	280	8000
BF*3017	2375	317	9000

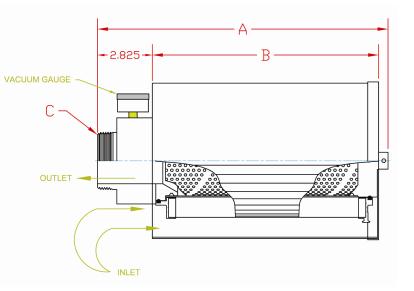
139

High Flow Particulate Breathers

BF Breathers

High Flow Particulate Breathers with coreless glass media element and integral vacuum gage.


Fluid contamination is the root cause of most hydraulic system failures. Controlling airborne contamination is critical. The synergy of Hy-Pro fluid filter elements and Hy-Pro BF breathers yields clean fluid and a healthy hydraulic system.


APPLICATIONS

- Replace ineffective filler / breather caps.
- Control contaminant ingression with glass media elements.
- High capacity, High efficiency pleated elements extend the life of other filters in the system.
- Large element surface area yields long life and extends service interval.

BF INSTALLATION DRAWING

Part Number	A (11 length)	A (17 length)	B (11 length)	B (17 length)	с
A20	16.95 (430)	22.55 (573)	13.64 (347)	19.23 (488)	2" ANSI Flange
A30	16.95 (430)	22.55 (573)	13.64 (347)	19.23 (488)	3" ANSI Flange
B25	14.95 (380)	20.55 (522)	11.64 (296)	17.23 (438)	2.5" Male BSPT
B30	14.95 (380)	20.55 (522)	11.64 (296)	17.23 (438)	3.0" Male BSPT
N25	14.95 (380)	20.55 (522)	11.64 (296)	17.23 (438)	2.5" Male NPT
N30	14.95 (380)	20.55 (522)	11.64 (296)	17.23 (438)	3.0" Male NPT

BF BREATHER ASSEMBLY PART NUMBER GUIDE

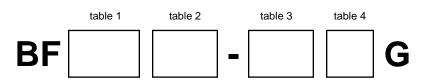
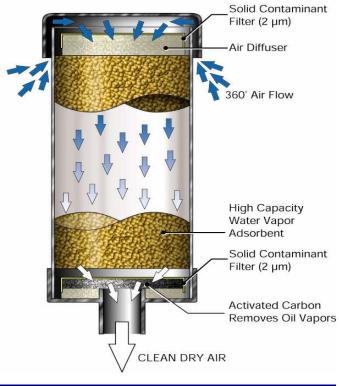


table 2

REPLACEMENT FILTER ELEMENT PART NUMBER GUIDE

table 4	
code	Seal material
В	Buna
V	Viton



Connection	code
2" ANSI Flange	11
3" ANSI Flange	
2.5" Male BSPT	17
3.0" Male BSPT	
2.5" Male NPT	
3.0" Male NPT	

table 1 code A20 A30 B25 B30 N25 N30

table 2 code	Element length	tabl co
11	Single length	3 6
17	Double length	10 25

table 3	3	
code	Filtration rating	media type
ЗM	0.3µ absolute	G7 Dualglass
6M	0.6µ absolute	G7 Dualglass
10M	1.0µ absolute	G7 Dualglass
25M	2.5µ absolute	G7 Dualglass

Hy-Dry Desiccant Breathers

Hy-Dry Breathers Disposable Air Purifying Breathers

Fluid contamination is the root cause of most hydraulic system failures. Controlling airborne contamination is critical. The synergy of Hy-Pro fluid filter elements and Hy-Dry desiccant breathers yields fluid clarification and a healthy hydraulic system.

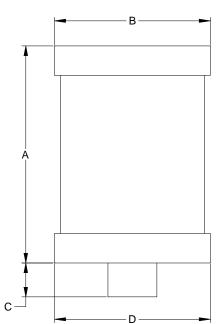
FEATURES RENEFITS ADVANTAGES

PRODUCT SPECIFICATIONS

Air flow rate	From 35 CFM (262 gpm) up to 250
	CFM (1875 gpm).
Solid contaminant	2 micron, 100% efficiency (35 CFM)
filtration efficiency	
Chemical	Impervious to alkalis, mineral oils,
resistance	non-oxidizing acids, salt water,
	hydrocarbons, and synthetic oils.
HPB-34 (mini)	2.8 fl oz / 0.35 cup water capacity
HPB-100	3.1 fl oz / 0.4 cup water capacity
HPB-101	6.2 fl oz / 0.8 cup water capacity
HPB-102, B-302	13.9 fl oz / 1.7 cup water capacity
HPBR-102	13.9 fl oz / 1.7 cup water capacity
HPB-108	18.5 fl oz / 2.3 cup water capacity
HPB-109	18.5 fl oz / 2.3 cup water capacity
Operating temp.	-20°F (-28°C) to 200°F (93°C)

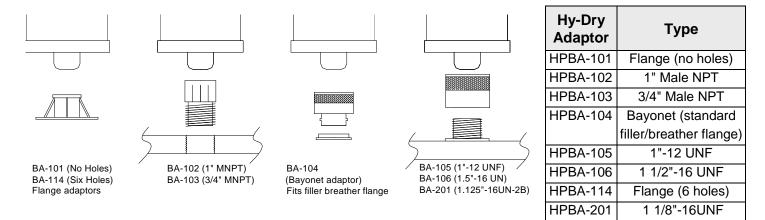
Contaminant	Problem	Solution		
Water vapor	Rust & oxidation	Water		
	Additive depletion	adsorbent		
	Freezing	silica		
	Increased conductivity			
	Fluid degradation			
Solid particulate	Component wear	2 micron		
	Stiction	removal		
	Orifice blockage	efficiency		
Acids & salts	Chemical reaction	100%		
	Microbial growth			
	Overheating			
	Corrosion			

FEATORES, DE	ENEFITS, ADVANTAGES			
Retro-fit existing	With adaptors a Hy-Dry breather			
reservoirs	can be installed on virtually any			
	existing reservoir. (Versatility)			
Water adsorption	Eliminate water contamination			
	from reservoir ingression			
	Minimize rust and acid corrosion.			
	Reduce component wear.			
	Reduce maintenance costs.			
	Prolong fluid life.			
	Reduce oil oxidation.			
	Enhance lubricity of fluids.			
Chemically inert	Gold silica gel is chemically inert,			
	non toxic, non-deliquescent and			
	non -corrosive. (chemically inert)			
Disposable	Materials meet U.S Pharmacopoeia			
	XXI Class VI toxicity requirements.			
	Hy-Dry contains no metal			
	components. (easy disposal)			
Color indicator	When maximum adsorption is			
	reached Hy-Dry will turn from Gold			
	to Green as an indicator to replace			
	it. (easy condition indicator)			
Bi-directional	Air inhaled is cleaned and dried, and			
air flow	oil is removed from exhausted air .			
Activated carbon	As air is exhausted from the tank			
	activated carbon removes oil vapor,			
	fumes, and odors. (clean exhaust)			



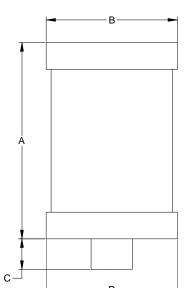
	HY-DRY DISPOSAL CARTRIDGE ORDER GUIDE								
Hy-Dry Number A B		C D		Weight CFN		GPM	Hy-Dry Connection		
HPB-34	3.25" (3,3cm)	3.25" (3,3cm)	N/A	3.25" (3,3cm)	0.8lb (1,7kg)	10	75	1/2" FNPT	
HPB-100	3.5" (9cm)	5.0" (12,8cm)	1.25" (3,2cm)	5.0" (12,8cm)	1.3lb (0.6kg)	35	262	Male 1" scd 40	
HPB-101	5.0" (12,8cm)	5.0" (12,8cm)	1.25" (3,2cm)	5.0" (12,8cm)	1.9lb (0.9kg)	35	262	Male 1" scd 40	
HPB-102	8.0" (20,5cm)	5.0" (12,8cm)	1.25" (3,2cm)	5.0" (12,8cm)	3.3lb (1.5kg)	35	262	Male 1" scd 40	
HPB-302	8.5" (21,8cm)	5.0" (12,8cm)	N/A	5.2" (13,3cm)	3.3lb (1.5kg)	35	262	Male 1" scd 40	
HPBR-102	9.5" (24,4cm)	5.0" (12,8cm)	N/A	5.2" (13,3cm)	5.0lb (2.3kg)	35	262	Male 1" scd 40	
HPB-108	10.0" (25,4cm)	5.0" (12,8cm)	1.25" (3,2cm)	5.0" (12,8cm)	5.0lb (2.3kg)	100	750	2" MNPT	
HPB-109	14.0" (35,5cm)	5.0" (12,8cm)	1.25" (3,2cm)	5.0" (12,8cm)	5.0lb (2.3kg)	250	1875	3" MNPT	

WHEN TO CHANGE THE HY-DRY BREATHER


New Hy-Dry breather silica is gold and as the silica adsorbs water the color will change to green and then to a very dark green.

RESERVOIR ADAPTORS

Adaptors are available to retrofit any reservoir or gearbox to accept the Hy-Dry breather. HPB-100 through HPB-102 will require one of the adaptors displayed below. HPB-108 through HPBR-102 do not require adaptors.


www.filterelement.com

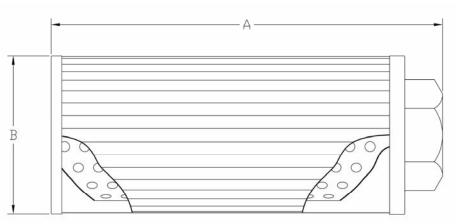
C SERIES HY-DRY BREATHERS FOR HIGH AMBIENT HUMIDITY APPLICATIONS

Hy-Dry Assembly	Check valve psi (bar)	A	В	С	Replacement Element	Weight	CFM (gpm,lpm)	Hy-Dry Stem
HPBC-101	0.3 (0,02) IN 2.1 (0,15) OUT	5.0" (12,8cm)	5.0" (12,8cm)	1.25" (3,2cm)	HPB-341	0.8lb (1,7kg)	35 (262,990)	1" schd 40
HPBC-102	0.3 (0,02) IN 2.1 (0,15) OUT	8.0" (20cm)	5.0" (12,8cm)	1.25" (3,2cm)	HPB-342	1.3lb (0.6kg)	35 (262,990)	1" schd 40
HPBC-121	0.3 (0,02) IN 2.1 (0,15) OUT	5.0" (12,8cm)	5.0" (12,8cm)	1.87" (4,7cm)	HPB-343	1.9lb (0.9kg)	35 (262,990)	2" MNPT
HPBC-122	0.3 (0,02) IN 2.1 (0,15) OUT	8.0" (20cm)	5.0" (12,8cm)	1.87" (4,7cm)	HPB-344	3.3lb (1.5kg)	35 (262,990)	2" MNPT

High humidity applications, such as paper mills and steel mills, need a Hy-Dry desiccant breather even more than a dry environment. The HPBC series breather utilizes dual check valves that control air flow in and out of the reservoir. Air does not enter or leave the reservoir unless the vacuum (0.3 psi, 0,02 bar) or pressure (2.1 psi, 0,15 bar) threshold is exceeded. The check valves prevent air exchange caused by temperature fluctuation with safeguards to protect the integrity of the tank while preventing exhaled air from coming in contact with the desiccant when exhausted (extending useful life). The HPBC-101 & HPBC-102 require and adaptor (see page 4). Assemblies include the element and permanent check valve cap. Upon service unscrew and keep the check valve cap and replace the element with identical part number shown on the element.

HPBR-102 FOR MOBILE AND HEAVY DUTY APPLICATIONS

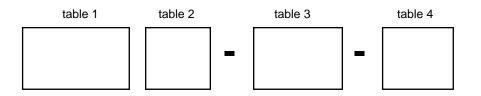
*HPBR-102 assembly is complete with a metal reinforced base, that remains with the reservoir or gearbox. The replacement breather element (HPB-302) is securely threaded into the base. To service remove the element only (HPB-302) and replace with a new cartridge. The HPBR-102 assembly is recommended for Heavy Duty, Continuous vibration, Mobile, and Extreme climate applications (coal pulverizer gearbox) where a slip fit breather and adaptor could become dislodged. HPBR-102 has a 1" Male NPT connection. See page 4 table for dimensional and performance information.


Suction Strainers

In-Tank Suction Strainers

Product Description

- Threaded port sizes from 1/2" to 3" NPT or BSPT.
- 3 PSID (0,21 bar) bypass valve available.
- Max flow rate 100 gpm (378 lpm)
- 100 mesh (149m) standard. 30, 60, or 200 mesh available.
- Max Temperature 212°F (100°C)
- Compatible with petroleum and mineral based fluids only.
- Nylon Polymer threaded Open Cap.
- Corrosion resistant steel closed cap and support tube components (stainless steel is available upon request).


Series	Max rated flow GPM (5 ft/sec flow velocity)	Flow velocity at max rated flow (ft/sec)	Thread size (NPT or BSPT)	A Dimension IN (mm)	B Dimension IN (mm)	Unit weight LBS
S*05	4.7	5.3	1/2	3.1 (78,7)	2.6 (66,0)	0.5
S*08	8.3	4.8	3/4	3.5 (88,9)	2.6 (66,0)	0.5
S*10	13.5	3.7	1	5.4 (137,2)	2.6 (66,0)	0.7
S*20	23.3	4.3	1 1/4	6.9 (175,3)	3.4 (86,4)	1
S*30	31.7	4.8	1 1/2	8.1 (205,8)	3.4 (86,4)	1.2
S*50	50	7.9	1 1/2	10 (254)	3.9 (99,1)	1.4
S*51	52.2	4.8	2	10 (254)	3.9 (99,1)	1.8
S*75	74.7	5.1	2 1/2	10.1 (256,5)	5.1 (129,6)	2.3
S*100	114.8	4.4	3	11.8 (299,7)	5.1 (129,6)	3

Max flow and velocity ratings based on 225 SSU oil at 100F through standard 100 mesh media

144

SUCTION STRAINER PART NUMBER GUIDE

Bold print denotes standard options (1~4 week delivery)

Italicized print denotes non-standard options (1~12 week delivery)

table 1 Code	Thread type
SN	NPT thread
SIN	NFT thread

table 2		
Series	Max flow GPM (LPM)	Thread size
5	4.7 (17,6)	1/2
8	8.3 (13,1)	3/4
10	13.5 (50,6)	1
20	23.3 (87,37)	1 1/4
30	31.7 (116,2)	1 1/2
50	50 (187,5)	1 1/2
51	52.2 (195,7)	2
75*	74.7 (280,1)	2 1/2
100*	114.8 (430,5)	3

Stainless mesh media
30 mesh
60 mesh
100 mesh (149μ nominal)
200 mesh (74µ nominal)

table 4	
Code	Bypass valve setting
Omit	No Bypass
B3	3 psid Bypass

*Available in SN (NPT thread only)

145

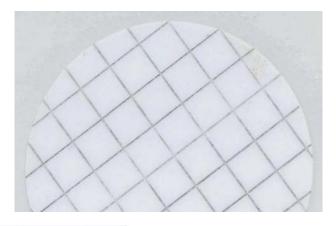
APPLICATION TOOLS

PTK-1 Test Kit

PTK-1 Applications

Monitoring fluid cleanliness in hydraulic and lubrication systems is a common practice. When the pressure is on waiting weeks for bottle samples from an independent lab might not be an option. Oil analysis practices vary from lab to lab and once the sample is shipped off you no longer have control of the sample or how it is processed.

See The Difference, Control The Process


With PTK-1 oil cleanliness can be visually analyzed in the field without waiting for lab results and losing control of the analyzing process. The PTK-1 kit provides the opportunity to see the type, concentration, and actual size of particulate contamination inside the system. The kit includes reference photos so that the patch sample can be correlated to an approximate ISO Fluid Cleanliness Code. When used in conjunction with the PC4000 or PODS on-line particle counting equipment exact fluid cleanliness and visual analysis are at your fingertips. When you need results now the PTK-1 is great alternative to off-site oil analysis laboratories.

Oil Analysis Patch Test Kit

A valuable tool for visually analyzing contamination levels and contaminate types in hydraulic and lubrication systems in the field when you need results now.

Complete PTK-1 Kit Includes

- 100x magnification field microscope
- 1.2m filter test patches
- Funnel assembly with ml fill line for accuracy
- Vacuum pump to extract fluid samples from the system and process 25ml sample through filter patch
- Sample bottles
- Forceps for filter patch handling
- Solvent dispenser with dispensing filters
- Instruction manual
- Visual correlation chart to determine approximate ISO Cleanliness Code of patch test kit sample
- Visual correlation chart to determine type of particles captured on the patch
- Patch mounting cards and adhesive covers to protect samples from ambient contamination and to preserve samples for future reference

VAC-U-Dry Application Questionnaire

From	То	Date

System Questions

oystem duestions				
Oil Volume	Litres	Gallons		
Oil Type	OEM	Grade		SG
Oil Temperature	Normal	Low		
ISO Cleanliness	Normal / /	Target	/ /	
Water in PPM	High	Normal	Tarç	get
Water Ingress	Constant	Intermittent		
Current Unit	Make	Model	Seri	es
Coolers?	Temp sett	ing?	Req	uired?
Objective in Hrs	High PPM to Target PP	М	Hrs	Days

Location Questions

Ambient Temperature					
High Temperatue					
Low Temperature					
Utility Services	Electrical	Volts		Hz	Amps
Available	Process Water		Yes/No	·	Temp
General Enviornment	Dry/wet/dust etc				
Unit - Mobile or Fixed i			Negative / Po	sitive Head?	
Plant Application	Paper Mach etc				

Information & Respond

Reply Required	in Days
CUSTOMER OBJECTI	VES

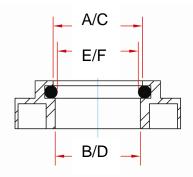
CONTACT INFORMATION		
Company Address		
NAME	 POSITION	
Tel No		
Email		
Fax		HY-PRO

www.filterelement.com

FILTRATION

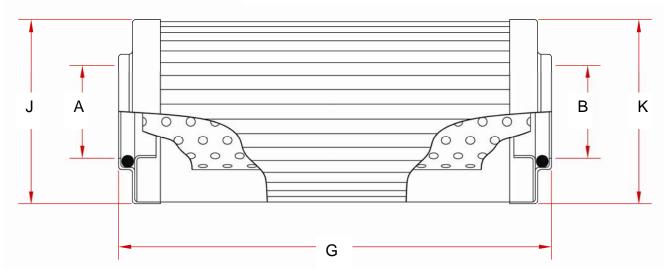
FILTER APPLICATION DATA SHEET

NAME			Company					
Phone			Email					
Mobile			Fax					
System Description								
Critical System Components								
Filter Location (pressure, return)								
Existing System Filtration (location, Micron rating)								
Manufacturer/T		rade name	:			ISO VG:		
Fluid Information	Viscosity cTs:		Viscosity S	US:		S.G:		
	Emulsion mix:					ntent (PPM)		
Operating Tempera	ature Range	FROM:	۳		TO:	<u>۴</u>		
	_	FROM:	<u>ሮ</u> ም		TO:	ງ ເ		
Cold start Temperature		Time Inte	rval to Opera	ting Temp		Hours/M	linutes	
Contaminant Ingression Rate, Description (coal mill, paper mill)			OW	MED	IUM	SEVER	RE	
Contaminant (wear	metal, gel)							
Maximum Clean El		PSID / BAR (typically 15% - 30% indicator trip setting)						
Maximum Loaded I		PSID / BAR (dependent upon bypass valve setting)						
Element Change In				Υ Ι	1 71		57	
Target ISO Cleanlir		SO4406:19	999, 4/6/14)					
System Pressure	Normal:	PS	I / BAR	Maximum:		PSI / E	BAR	
Pump Flow Rate	Normal:	GPM / LPM		Maximum:		GPM / LPM		
Return Flow Rate	Normal:	GP	M / LPM	Maximum:		GPM / LPM		
Seal Material	Nitrile-Buna	Viton	EPR	Silicone	Other:			
Bypass valve psid	None	3	5	15	25	50	102	
Differential Pressu	re Indicator	Visual Pop-Up	Electrical	Visual + Electrical	∆p Gauge	∆P Gauge + Electric	None	
Mounting Arranger (bowl down, top loa								
Port Configuration (in-line 180°, 90°, d	ual inlet, etc)							
Other Requirement Reverse flow, Bi-Di								
Space Restrictions element removal, e								
Quantity and Requi	ired Delivery							
Notes:								

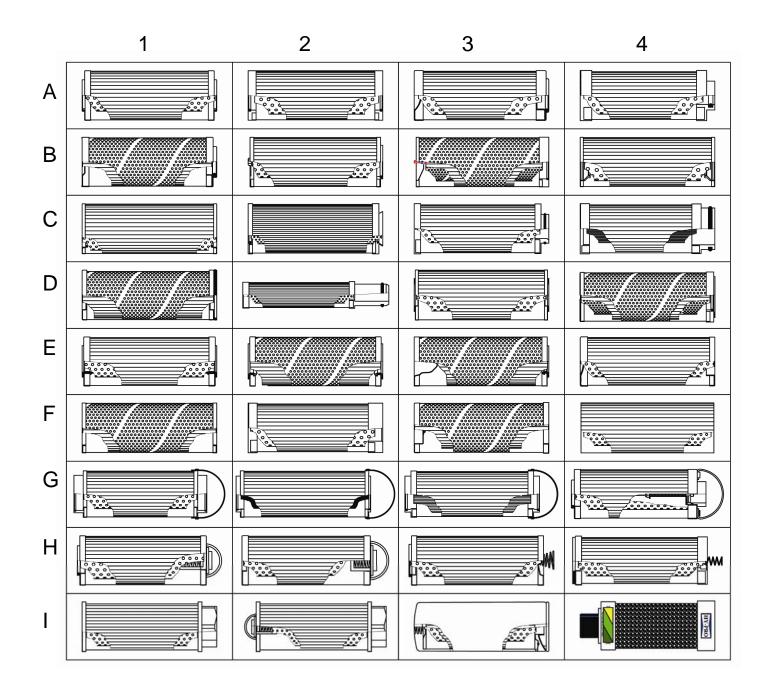


FILTRATION

Non-Standard Filter Element Worksheet


NAME	Co	mpany				
Phone	Em	nail				
Part No.			Element OE	M		
Element Style*	(select from g	rid pg2)	Quantity rec	quired		
End cap material			(plated	steel, stainle	ess steel, plastic r	nolded)
Support tube			(no-coreless	, inner only, o	outer only, inner 4	- outer)
Bypass valve	(yes/no)	Bypass	setting	g (psid/bar)		
Media type			(cellulose, poly, glass, wire mesh, stainless fibre)			
Media rating		(nominal, absolute, $\beta x = ?$, $\beta x_{[c]} = ?$)				
Seal location			(none, single end, double end)			
Seal type		(captured o-rin	captured o-ring, male o-ring, flat gasket, grommet)		
Seal material		(Buna-r	nitrile, fluoroca	rbon-Viton, E	EPR, silicone, nec	prene)
Collapse rating	(psid/bai) Fluid	type + ISO V	G		
	A (id1):	E (ort	1):	l:		
Dimensions (must specify Inch	B (id1a):	F (ort	2):	J (od	1):	(in/mm)
or millimeter scale)	C (id2):	G (oa	I):	K (od	2):	(11/1111)
	D (id2a):	H:		L:		

*If your element style is not on the grid (see page 2) please send a sketch and/or include digital photos


Dimension boxes H, I, L have been left blank for in a sketch or other features need to be added to the drawing. When measuring for dimensions E and F (o-ring touch-off) be sure that the o-ring is still installed and that the caliper blade makes only very light contact with the o-ring. Do not apply pressure to the o-ring.

With captured o-ring seal end caps the B or D dimension will typically be smaller than the A or C dimension respectively.

Non-Standard Filter Element Worksheet

Warranty

Hy-Pro Filtration supplied equipment is warranted to be free from defective materials and workmanship for a period of one year from the date of shipment when used within the normal working parameters for which the equipment was designed. Hy-Pro Filtration assumes no responsibility for unauthorized installation of any added components, removal or repair of originally installed components or alterations or rewiring of originally supplied equipment. Any such changes without written instructions or prior approval from Hy-Pro Filtration will void all warranties. If any Hy-Pro Filtration supplied equipment does not perform as warranted, it will be repaired or replaced on a no-charge basis by Hy-Pro Filtration with the Purchaser initially bearing the cost of shipping to a Hy-Pro Filtration manufacturing facility.

This warranty does not apply to parts, which through normal use require replacement during the warranty period. Hy-Pro Filtration liability under this warranty shall be limited to repair or replacement. In no event however will Hy-Pro Filtration be liable for any labor or consequential damages. This warranty shall not apply to any assembly or component part of the equipment which has been furnished by Purchaser

Except for the express warranty set forth above, Hy-Pro Filtration hereby disclaims all warranties, express or implied, to Purchaser, including but not limited to, warranty of fitness for a particular purpose and warranty of merchantability. Hy-Pro Filtration shall not be liable for any incidental or consequential damages which might arise out of the use of this property.

Material Return & Warranty Authorization Policy

Any material returned to the factory for warranty credit or replacement must be accompanied by a completed RGA (Return Goods Authorization) form. To complete the form you must contact the factory for a RGA number, which will be used to track the material sent to the factory.

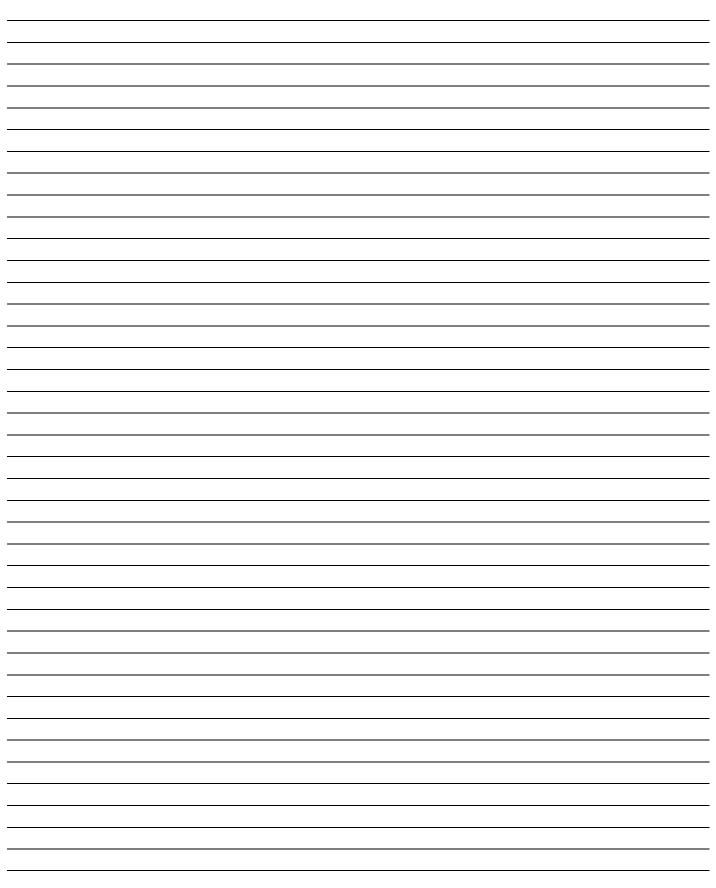
All shipments must be sent to the factory freight prepaid, unless otherwise approved, to the appropriate address (confirm return location with customer service):

Hy-Pro Filtration 12955 Ford Drive Fishers, IN 46038 **Hy-Pro Filtration West** 1909 Unit C NE 5th Street Vancouver, WA 98661

In the case of multiple item returns, all must be tagged with possible causes of failure. Please mark the outside of the shipping carton with the RGA number.

Return Disposition: Stock Items

- 1. Any items returned must be in unused condition unless otherwise authorized.
- 2. If items are returned for customer order error a restocking charge will be applied.
- 3. If items are returned for a Hy-Pro error a full credit will be issued.
- 4. Credit will not be issued on items which are no longer in specification with current design or were manufactured more than 12 months prior to the return date. Hy-Pro will determine if the items are suitable for return.


Return Disposition: Manufactured Items

- 1. Upon request a warranty claim form will be sent to the customer.
- 2. If the returned item has been determined to have a manufacturing defect and not suitable for repair a replacement part will be supplied at no cost to the customer.
- 3. If the returned item has been determined to have a manufacturing defect and is suitable for repair the item will be repaired or replaced at the discretion of the factory at no cost to the customer.
- 4. If the item has been determined not to have a manufacturing defect and is suitable for repair the customer will be sent a disposition report approval request to replace, repair, or return the part at the customer's expense.
- 5. If the item has been determined not to have a manufacturing defect and is not suitable for repair the customer will be sent a disposition report and asked for approval to replace or return the part at the customer's expense.

Note: All correspondence must reference the RGA# to ensure proper tracking return or claim.

This form must accompany any i	items being returned to Hy-Pro Filtratio	n.	
Customer Contact:	Position:		
Company Name:			
Customer Address:			
Machine Part No.:	Seria	l No.:	
Part No Returned (Description):			
Part No Returned (Description):			
Part No Returned (Description):			
Part No Returned (Description): Describe Machine Application (L			
Part No Returned (Description): Describe Machine Application (U	Jse) and cause of failure:		
Part No Returned (Description): Describe Machine Application (L	Jse) and cause of failure:		
Part No Returned (Description): Describe Machine Application (L	Jse) and cause of failure: For Hy-Pro Internal Use Only Customer Contact:		

www.filterelement.com

 _

www.filterelement.com

Hy-Pro Filtration

12955 Ford Drive Fishers, Indiana 46038 U.S.A Tel 317.849.3535 Fax 317.849.9201

Hy-Pro Filtration West

1909 Unit C NE 5th Street Vancouver, WA 98661 U.S.A. Tel 360.693.7701 Fax 360.693.7305

www.filterelement.com

Distributed By:

